MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltresr Structured version   Visualization version   GIF version

Theorem ltresr 11164
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltresr (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)

Proof of Theorem ltresr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 11158 . . . 4 < ⊆ (ℝ × ℝ)
21brel 5743 . . 3 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ))
3 opelreal 11154 . . . 4 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
4 opelreal 11154 . . . 4 (⟨𝐵, 0R⟩ ∈ ℝ ↔ 𝐵R)
53, 4anbi12i 627 . . 3 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ↔ (𝐴R𝐵R))
62, 5sylib 217 . 2 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (𝐴R𝐵R))
7 ltrelsr 11092 . . 3 <R ⊆ (R × R)
87brel 5743 . 2 (𝐴 <R 𝐵 → (𝐴R𝐵R))
9 opex 5466 . . . . . . 7 𝐴, 0R⟩ ∈ V
10 opex 5466 . . . . . . 7 𝐵, 0R⟩ ∈ V
11 eleq1 2817 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ ℝ))
1211anbi1d 630 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ)))
13 eqeq1 2732 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 = ⟨𝑧, 0R⟩ ↔ ⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩))
1413anbi1d 630 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩)))
1514anbi1d 630 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
16152exbidv 1920 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → (∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
1712, 16anbi12d 631 . . . . . . 7 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
18 eleq1 2817 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝐵, 0R⟩ ∈ ℝ))
1918anbi2d 629 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ)))
20 eqeq1 2732 . . . . . . . . . . 11 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 = ⟨𝑤, 0R⟩ ↔ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩))
2120anbi2d 629 . . . . . . . . . 10 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩)))
2221anbi1d 630 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
23222exbidv 1920 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
2419, 23anbi12d 631 . . . . . . 7 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
25 df-lt 11152 . . . . . . 7 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
269, 10, 17, 24, 25brab 5545 . . . . . 6 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
2726baib 535 . . . . 5 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
28 vex 3475 . . . . . . . . . . 11 𝑧 ∈ V
2928eqresr 11161 . . . . . . . . . 10 (⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩ ↔ 𝑧 = 𝐴)
30 eqcom 2735 . . . . . . . . . 10 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ ⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩)
31 eqcom 2735 . . . . . . . . . 10 (𝐴 = 𝑧𝑧 = 𝐴)
3229, 30, 313bitr4i 303 . . . . . . . . 9 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ 𝐴 = 𝑧)
33 vex 3475 . . . . . . . . . . 11 𝑤 ∈ V
3433eqresr 11161 . . . . . . . . . 10 (⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝑤 = 𝐵)
35 eqcom 2735 . . . . . . . . . 10 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ ⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩)
36 eqcom 2735 . . . . . . . . . 10 (𝐵 = 𝑤𝑤 = 𝐵)
3734, 35, 363bitr4i 303 . . . . . . . . 9 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ 𝐵 = 𝑤)
3832, 37anbi12i 627 . . . . . . . 8 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3928, 33opth2 5482 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝐴 = 𝑧𝐵 = 𝑤))
4038, 39bitr4i 278 . . . . . . 7 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩)
4140anbi1i 623 . . . . . 6 (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
42412exbii 1844 . . . . 5 (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
4327, 42bitrdi 287 . . . 4 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
443, 4, 43syl2anbr 598 . . 3 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
45 breq12 5153 . . . 4 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧 <R 𝑤𝐴 <R 𝐵))
4645copsex2g 5495 . . 3 ((𝐴R𝐵R) → (∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤) ↔ 𝐴 <R 𝐵))
4744, 46bitrd 279 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵))
486, 8, 47pm5.21nii 378 1 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  cop 4635   class class class wbr 5148  Rcnr 10889  0Rc0r 10890   <R cltr 10895  cr 11138   < cltrr 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492  df-er 8725  df-ec 8727  df-qs 8731  df-ni 10896  df-pli 10897  df-mi 10898  df-lti 10899  df-plpq 10932  df-mpq 10933  df-ltpq 10934  df-enq 10935  df-nq 10936  df-erq 10937  df-plq 10938  df-mq 10939  df-1nq 10940  df-rq 10941  df-ltnq 10942  df-np 11005  df-1p 11006  df-enr 11079  df-nr 11080  df-ltr 11083  df-0r 11084  df-r 11149  df-lt 11152
This theorem is referenced by:  ltresr2  11165  axpre-lttri  11189  axpre-lttrn  11190  axpre-ltadd  11191  axpre-mulgt0  11192  axpre-sup  11193
  Copyright terms: Public domain W3C validator