MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltresr Structured version   Visualization version   GIF version

Theorem ltresr 10214
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltresr (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)

Proof of Theorem ltresr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 10208 . . . 4 < ⊆ (ℝ × ℝ)
21brel 5336 . . 3 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ))
3 opelreal 10204 . . . 4 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
4 opelreal 10204 . . . 4 (⟨𝐵, 0R⟩ ∈ ℝ ↔ 𝐵R)
53, 4anbi12i 620 . . 3 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ↔ (𝐴R𝐵R))
62, 5sylib 209 . 2 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (𝐴R𝐵R))
7 ltrelsr 10142 . . 3 <R ⊆ (R × R)
87brel 5336 . 2 (𝐴 <R 𝐵 → (𝐴R𝐵R))
9 opex 5088 . . . . . . 7 𝐴, 0R⟩ ∈ V
10 opex 5088 . . . . . . 7 𝐵, 0R⟩ ∈ V
11 eleq1 2832 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ ℝ))
1211anbi1d 623 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ)))
13 eqeq1 2769 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 = ⟨𝑧, 0R⟩ ↔ ⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩))
1413anbi1d 623 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩)))
1514anbi1d 623 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
16152exbidv 2019 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → (∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
1712, 16anbi12d 624 . . . . . . 7 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
18 eleq1 2832 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝐵, 0R⟩ ∈ ℝ))
1918anbi2d 622 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ)))
20 eqeq1 2769 . . . . . . . . . . 11 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 = ⟨𝑤, 0R⟩ ↔ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩))
2120anbi2d 622 . . . . . . . . . 10 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩)))
2221anbi1d 623 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
23222exbidv 2019 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
2419, 23anbi12d 624 . . . . . . 7 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
25 df-lt 10202 . . . . . . 7 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
269, 10, 17, 24, 25brab 5159 . . . . . 6 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
2726baib 531 . . . . 5 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
28 vex 3353 . . . . . . . . . . 11 𝑧 ∈ V
2928eqresr 10211 . . . . . . . . . 10 (⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩ ↔ 𝑧 = 𝐴)
30 eqcom 2772 . . . . . . . . . 10 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ ⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩)
31 eqcom 2772 . . . . . . . . . 10 (𝐴 = 𝑧𝑧 = 𝐴)
3229, 30, 313bitr4i 294 . . . . . . . . 9 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ 𝐴 = 𝑧)
33 vex 3353 . . . . . . . . . . 11 𝑤 ∈ V
3433eqresr 10211 . . . . . . . . . 10 (⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝑤 = 𝐵)
35 eqcom 2772 . . . . . . . . . 10 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ ⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩)
36 eqcom 2772 . . . . . . . . . 10 (𝐵 = 𝑤𝑤 = 𝐵)
3734, 35, 363bitr4i 294 . . . . . . . . 9 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ 𝐵 = 𝑤)
3832, 37anbi12i 620 . . . . . . . 8 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3928, 33opth2 5104 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝐴 = 𝑧𝐵 = 𝑤))
4038, 39bitr4i 269 . . . . . . 7 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩)
4140anbi1i 617 . . . . . 6 (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
42412exbii 1944 . . . . 5 (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
4327, 42syl6bb 278 . . . 4 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
443, 4, 43syl2anbr 592 . . 3 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
45 breq12 4814 . . . 4 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧 <R 𝑤𝐴 <R 𝐵))
4645copsex2g 5113 . . 3 ((𝐴R𝐵R) → (∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤) ↔ 𝐴 <R 𝐵))
4744, 46bitrd 270 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵))
486, 8, 47pm5.21nii 369 1 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  cop 4340   class class class wbr 4809  Rcnr 9940  0Rc0r 9941   <R cltr 9946  cr 10188   < cltrr 10193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-omul 7769  df-er 7947  df-ec 7949  df-qs 7953  df-ni 9947  df-pli 9948  df-mi 9949  df-lti 9950  df-plpq 9983  df-mpq 9984  df-ltpq 9985  df-enq 9986  df-nq 9987  df-erq 9988  df-plq 9989  df-mq 9990  df-1nq 9991  df-rq 9992  df-ltnq 9993  df-np 10056  df-1p 10057  df-enr 10130  df-nr 10131  df-ltr 10134  df-0r 10135  df-r 10199  df-lt 10202
This theorem is referenced by:  ltresr2  10215  axpre-lttri  10239  axpre-lttrn  10240  axpre-ltadd  10241  axpre-mulgt0  10242  axpre-sup  10243
  Copyright terms: Public domain W3C validator