![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5549 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5681 | . 2 ⊢ (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtrri 4018 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∈ wcel 2104 ⊆ wss 3947 {copab 5209 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3954 df-ss 3964 df-opab 5210 df-xp 5681 |
This theorem is referenced by: brab2a 5768 dmoprabss 7513 ecopovsym 8815 ecopovtrn 8816 ecopover 8817 enqex 10919 lterpq 10967 ltrelpr 10995 enrex 11064 ltrelsr 11065 ltrelre 11131 ltrelxr 11279 rlimpm 15448 dvdszrcl 16206 prdsle 17412 prdsless 17413 sectfval 17702 sectss 17703 ltbval 21817 opsrle 21821 lmfval 22956 isphtpc 24740 bcthlem1 25072 bcthlem5 25076 lgsquadlem1 27119 lgsquadlem2 27120 lgsquadlem3 27121 ishlg 28120 perpln1 28228 perpln2 28229 isperp 28230 iscgra 28327 isinag 28356 isleag 28365 inftmrel 32596 isinftm 32597 fldextfld1 33016 fldextfld2 33017 metidval 33168 metidss 33169 faeval 33542 filnetlem2 35567 areacirc 36884 lcvfbr 38193 cmtfvalN 38383 cvrfval 38441 dicssdvh 40360 pellexlem3 41871 pellexlem4 41872 pellexlem5 41873 pellex 41875 rfovcnvf1od 43057 fsovrfovd 43062 |
Copyright terms: Public domain | W3C validator |