Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5456 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5586 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtrri 3954 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 {copab 5132 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 |
This theorem is referenced by: brab2a 5670 dmoprabss 7355 ecopovsym 8566 ecopovtrn 8567 ecopover 8568 enqex 10609 lterpq 10657 ltrelpr 10685 enrex 10754 ltrelsr 10755 ltrelre 10821 ltrelxr 10967 rlimpm 15137 dvdszrcl 15896 prdsle 17090 prdsless 17091 sectfval 17380 sectss 17381 ltbval 21154 opsrle 21158 lmfval 22291 isphtpc 24063 bcthlem1 24393 bcthlem5 24397 lgsquadlem1 26433 lgsquadlem2 26434 lgsquadlem3 26435 ishlg 26867 perpln1 26975 perpln2 26976 isperp 26977 iscgra 27074 isinag 27103 isleag 27112 inftmrel 31336 isinftm 31337 fldextfld1 31626 fldextfld2 31627 metidval 31742 metidss 31743 faeval 32114 filnetlem2 34495 areacirc 35797 lcvfbr 36961 cmtfvalN 37151 cvrfval 37209 dicssdvh 39127 pellexlem3 40569 pellexlem4 40570 pellexlem5 40571 pellex 40573 rfovcnvf1od 41501 fsovrfovd 41506 |
Copyright terms: Public domain | W3C validator |