![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5569 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5706 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtrri 4046 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 {copab 5228 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ss 3993 df-opab 5229 df-xp 5706 |
This theorem is referenced by: brab2a 5793 dmoprabss 7553 ecopovsym 8877 ecopovtrn 8878 ecopover 8879 enqex 10991 lterpq 11039 ltrelpr 11067 enrex 11136 ltrelsr 11137 ltrelre 11203 ltrelxr 11351 rlimpm 15546 dvdszrcl 16307 prdsle 17522 prdsless 17523 sectfval 17812 sectss 17813 ltbval 22084 opsrle 22088 lmfval 23261 isphtpc 25045 bcthlem1 25377 bcthlem5 25381 lgsquadlem1 27442 lgsquadlem2 27443 lgsquadlem3 27444 ishlg 28628 perpln1 28736 perpln2 28737 isperp 28738 iscgra 28835 isinag 28864 isleag 28873 inftmrel 33160 isinftm 33161 fldextfld1 33662 fldextfld2 33663 metidval 33836 metidss 33837 faeval 34210 filnetlem2 36345 numiunnum 36436 areacirc 37673 lcvfbr 38976 cmtfvalN 39166 cvrfval 39224 dicssdvh 41143 aks6d1c1p1rcl 42065 pellexlem3 42787 pellexlem4 42788 pellexlem5 42789 pellex 42791 rfovcnvf1od 43966 fsovrfovd 43971 |
Copyright terms: Public domain | W3C validator |