| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version | ||
| Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | ssopab2i 5530 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | df-xp 5665 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 4 | 2, 3 | sseqtrri 4013 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 {copab 5186 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-ss 3948 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: brab2a 5753 dmoprabss 7516 ecopovsym 8838 ecopovtrn 8839 ecopover 8840 enqex 10941 lterpq 10989 ltrelpr 11017 enrex 11086 ltrelsr 11087 ltrelre 11153 ltrelxr 11301 rlimpm 15521 dvdszrcl 16282 prdsle 17481 prdsless 17482 sectfval 17769 sectss 17770 ltbval 22006 opsrle 22010 lmfval 23175 isphtpc 24949 bcthlem1 25281 bcthlem5 25285 lgsquadlem1 27348 lgsquadlem2 27349 lgsquadlem3 27350 ishlg 28586 perpln1 28694 perpln2 28695 isperp 28696 iscgra 28793 isinag 28822 isleag 28831 inftmrel 33183 isinftm 33184 fldextfld1 33694 fldextfld2 33695 metidval 33926 metidss 33927 faeval 34282 filnetlem2 36402 numiunnum 36493 areacirc 37742 lcvfbr 39043 cmtfvalN 39233 cvrfval 39291 dicssdvh 41210 aks6d1c1p1rcl 42126 pellexlem3 42829 pellexlem4 42830 pellexlem5 42831 pellex 42833 rfovcnvf1od 44003 fsovrfovd 44008 sectfn 48979 |
| Copyright terms: Public domain | W3C validator |