![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5549 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5681 | . 2 ⊢ (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtrri 4018 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ⊆ wss 3947 {copab 5209 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-opab 5210 df-xp 5681 |
This theorem is referenced by: brab2a 5767 dmoprabss 7507 ecopovsym 8809 ecopovtrn 8810 ecopover 8811 enqex 10913 lterpq 10961 ltrelpr 10989 enrex 11058 ltrelsr 11059 ltrelre 11125 ltrelxr 11271 rlimpm 15440 dvdszrcl 16198 prdsle 17404 prdsless 17405 sectfval 17694 sectss 17695 ltbval 21589 opsrle 21593 lmfval 22727 isphtpc 24501 bcthlem1 24832 bcthlem5 24836 lgsquadlem1 26872 lgsquadlem2 26873 lgsquadlem3 26874 ishlg 27842 perpln1 27950 perpln2 27951 isperp 27952 iscgra 28049 isinag 28078 isleag 28087 inftmrel 32313 isinftm 32314 fldextfld1 32716 fldextfld2 32717 metidval 32858 metidss 32859 faeval 33232 filnetlem2 35252 areacirc 36569 lcvfbr 37878 cmtfvalN 38068 cvrfval 38126 dicssdvh 40045 pellexlem3 41554 pellexlem4 41555 pellexlem5 41556 pellex 41558 rfovcnvf1od 42740 fsovrfovd 42745 |
Copyright terms: Public domain | W3C validator |