Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5463 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5595 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtrri 3958 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 {copab 5136 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 |
This theorem is referenced by: brab2a 5680 dmoprabss 7377 ecopovsym 8608 ecopovtrn 8609 ecopover 8610 enqex 10678 lterpq 10726 ltrelpr 10754 enrex 10823 ltrelsr 10824 ltrelre 10890 ltrelxr 11036 rlimpm 15209 dvdszrcl 15968 prdsle 17173 prdsless 17174 sectfval 17463 sectss 17464 ltbval 21244 opsrle 21248 lmfval 22383 isphtpc 24157 bcthlem1 24488 bcthlem5 24492 lgsquadlem1 26528 lgsquadlem2 26529 lgsquadlem3 26530 ishlg 26963 perpln1 27071 perpln2 27072 isperp 27073 iscgra 27170 isinag 27199 isleag 27208 inftmrel 31434 isinftm 31435 fldextfld1 31724 fldextfld2 31725 metidval 31840 metidss 31841 faeval 32214 filnetlem2 34568 areacirc 35870 lcvfbr 37034 cmtfvalN 37224 cvrfval 37282 dicssdvh 39200 pellexlem3 40653 pellexlem4 40654 pellexlem5 40655 pellex 40657 rfovcnvf1od 41612 fsovrfovd 41617 |
Copyright terms: Public domain | W3C validator |