| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version | ||
| Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | ssopab2i 5510 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | df-xp 5644 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 4 | 2, 3 | sseqtrri 3996 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 {copab 5169 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ss 3931 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: brab2a 5732 dmoprabss 7493 ecopovsym 8792 ecopovtrn 8793 ecopover 8794 enqex 10875 lterpq 10923 ltrelpr 10951 enrex 11020 ltrelsr 11021 ltrelre 11087 ltrelxr 11235 rlimpm 15466 dvdszrcl 16227 prdsle 17425 prdsless 17426 sectfval 17713 sectss 17714 ltbval 21950 opsrle 21954 lmfval 23119 isphtpc 24893 bcthlem1 25224 bcthlem5 25228 lgsquadlem1 27291 lgsquadlem2 27292 lgsquadlem3 27293 ishlg 28529 perpln1 28637 perpln2 28638 isperp 28639 iscgra 28736 isinag 28765 isleag 28774 inftmrel 33134 isinftm 33135 fldextfld1 33643 fldextfld2 33644 metidval 33880 metidss 33881 faeval 34236 filnetlem2 36367 numiunnum 36458 areacirc 37707 lcvfbr 39013 cmtfvalN 39203 cvrfval 39261 dicssdvh 41180 aks6d1c1p1rcl 42096 pellexlem3 42819 pellexlem4 42820 pellexlem5 42821 pellex 42823 rfovcnvf1od 43993 fsovrfovd 43998 sectfn 49018 |
| Copyright terms: Public domain | W3C validator |