| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version | ||
| Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | ssopab2i 5490 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | df-xp 5622 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 4 | 2, 3 | sseqtrri 3984 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 {copab 5153 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ss 3919 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: brab2a 5709 dmoprabss 7450 ecopovsym 8743 ecopovtrn 8744 ecopover 8745 enqex 10810 lterpq 10858 ltrelpr 10886 enrex 10955 ltrelsr 10956 ltrelre 11022 ltrelxr 11170 rlimpm 15404 dvdszrcl 16165 prdsle 17363 prdsless 17364 sectfval 17655 sectss 17656 ltbval 21976 opsrle 21980 lmfval 23145 isphtpc 24918 bcthlem1 25249 bcthlem5 25253 lgsquadlem1 27316 lgsquadlem2 27317 lgsquadlem3 27318 ishlg 28578 perpln1 28686 perpln2 28687 isperp 28688 iscgra 28785 isinag 28814 isleag 28823 inftmrel 33144 isinftm 33145 fldextfld1 33655 fldextfld2 33656 metidval 33898 metidss 33899 faeval 34254 filnetlem2 36412 numiunnum 36503 areacirc 37752 lcvfbr 39058 cmtfvalN 39248 cvrfval 39306 dicssdvh 41224 aks6d1c1p1rcl 42140 pellexlem3 42863 pellexlem4 42864 pellexlem5 42865 pellex 42867 rfovcnvf1od 44036 fsovrfovd 44041 sectfn 49060 |
| Copyright terms: Public domain | W3C validator |