| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version | ||
| Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | ssopab2i 5493 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | df-xp 5625 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 4 | 2, 3 | sseqtrri 3980 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 {copab 5155 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ss 3915 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: brab2a 5712 dmoprabss 7456 ecopovsym 8749 ecopovtrn 8750 ecopover 8751 enqex 10820 lterpq 10868 ltrelpr 10896 enrex 10965 ltrelsr 10966 ltrelre 11032 ltrelxr 11180 rlimpm 15409 dvdszrcl 16170 prdsle 17368 prdsless 17369 sectfval 17660 sectss 17661 ltbval 21979 opsrle 21983 lmfval 23148 isphtpc 24921 bcthlem1 25252 bcthlem5 25256 lgsquadlem1 27319 lgsquadlem2 27320 lgsquadlem3 27321 ishlg 28581 perpln1 28689 perpln2 28690 isperp 28691 iscgra 28788 isinag 28817 isleag 28826 inftmrel 33156 isinftm 33157 fldextfld1 33681 fldextfld2 33682 metidval 33924 metidss 33925 faeval 34280 filnetlem2 36444 numiunnum 36535 areacirc 37773 lcvfbr 39139 cmtfvalN 39329 cvrfval 39387 dicssdvh 41305 aks6d1c1p1rcl 42221 pellexlem3 42948 pellexlem4 42949 pellexlem5 42950 pellex 42952 rfovcnvf1od 44121 fsovrfovd 44126 sectfn 49154 |
| Copyright terms: Public domain | W3C validator |