| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version | ||
| Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | ssopab2i 5513 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | df-xp 5647 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 4 | 2, 3 | sseqtrri 3999 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 {copab 5172 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ss 3934 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: brab2a 5735 dmoprabss 7496 ecopovsym 8795 ecopovtrn 8796 ecopover 8797 enqex 10882 lterpq 10930 ltrelpr 10958 enrex 11027 ltrelsr 11028 ltrelre 11094 ltrelxr 11242 rlimpm 15473 dvdszrcl 16234 prdsle 17432 prdsless 17433 sectfval 17720 sectss 17721 ltbval 21957 opsrle 21961 lmfval 23126 isphtpc 24900 bcthlem1 25231 bcthlem5 25235 lgsquadlem1 27298 lgsquadlem2 27299 lgsquadlem3 27300 ishlg 28536 perpln1 28644 perpln2 28645 isperp 28646 iscgra 28743 isinag 28772 isleag 28781 inftmrel 33141 isinftm 33142 fldextfld1 33650 fldextfld2 33651 metidval 33887 metidss 33888 faeval 34243 filnetlem2 36374 numiunnum 36465 areacirc 37714 lcvfbr 39020 cmtfvalN 39210 cvrfval 39268 dicssdvh 41187 aks6d1c1p1rcl 42103 pellexlem3 42826 pellexlem4 42827 pellexlem5 42828 pellex 42830 rfovcnvf1od 44000 fsovrfovd 44005 sectfn 49022 |
| Copyright terms: Public domain | W3C validator |