| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version | ||
| Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | ssopab2i 5497 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | df-xp 5629 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 4 | 2, 3 | sseqtrri 3987 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 {copab 5157 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ss 3922 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: brab2a 5716 dmoprabss 7457 ecopovsym 8753 ecopovtrn 8754 ecopover 8755 enqex 10835 lterpq 10883 ltrelpr 10911 enrex 10980 ltrelsr 10981 ltrelre 11047 ltrelxr 11195 rlimpm 15425 dvdszrcl 16186 prdsle 17384 prdsless 17385 sectfval 17676 sectss 17677 ltbval 21966 opsrle 21970 lmfval 23135 isphtpc 24909 bcthlem1 25240 bcthlem5 25244 lgsquadlem1 27307 lgsquadlem2 27308 lgsquadlem3 27309 ishlg 28565 perpln1 28673 perpln2 28674 isperp 28675 iscgra 28772 isinag 28801 isleag 28810 inftmrel 33132 isinftm 33133 fldextfld1 33619 fldextfld2 33620 metidval 33856 metidss 33857 faeval 34212 filnetlem2 36352 numiunnum 36443 areacirc 37692 lcvfbr 38998 cmtfvalN 39188 cvrfval 39246 dicssdvh 41165 aks6d1c1p1rcl 42081 pellexlem3 42804 pellexlem4 42805 pellexlem5 42806 pellex 42808 rfovcnvf1od 43977 fsovrfovd 43982 sectfn 49015 |
| Copyright terms: Public domain | W3C validator |