Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5466 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5596 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtrri 3963 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2110 ⊆ wss 3892 {copab 5141 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-opab 5142 df-xp 5596 |
This theorem is referenced by: brab2a 5680 dmoprabss 7371 ecopovsym 8591 ecopovtrn 8592 ecopover 8593 enqex 10679 lterpq 10727 ltrelpr 10755 enrex 10824 ltrelsr 10825 ltrelre 10891 ltrelxr 11037 rlimpm 15207 dvdszrcl 15966 prdsle 17171 prdsless 17172 sectfval 17461 sectss 17462 ltbval 21242 opsrle 21246 lmfval 22381 isphtpc 24155 bcthlem1 24486 bcthlem5 24490 lgsquadlem1 26526 lgsquadlem2 26527 lgsquadlem3 26528 ishlg 26961 perpln1 27069 perpln2 27070 isperp 27071 iscgra 27168 isinag 27197 isleag 27206 inftmrel 31430 isinftm 31431 fldextfld1 31720 fldextfld2 31721 metidval 31836 metidss 31837 faeval 32210 filnetlem2 34564 areacirc 35866 lcvfbr 37030 cmtfvalN 37220 cvrfval 37278 dicssdvh 39196 pellexlem3 40650 pellexlem4 40651 pellexlem5 40652 pellex 40654 rfovcnvf1od 41582 fsovrfovd 41587 |
Copyright terms: Public domain | W3C validator |