![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5560 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5695 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtrri 4033 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 ⊆ wss 3963 {copab 5210 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-ss 3980 df-opab 5211 df-xp 5695 |
This theorem is referenced by: brab2a 5782 dmoprabss 7536 ecopovsym 8858 ecopovtrn 8859 ecopover 8860 enqex 10960 lterpq 11008 ltrelpr 11036 enrex 11105 ltrelsr 11106 ltrelre 11172 ltrelxr 11320 rlimpm 15533 dvdszrcl 16292 prdsle 17509 prdsless 17510 sectfval 17799 sectss 17800 ltbval 22079 opsrle 22083 lmfval 23256 isphtpc 25040 bcthlem1 25372 bcthlem5 25376 lgsquadlem1 27439 lgsquadlem2 27440 lgsquadlem3 27441 ishlg 28625 perpln1 28733 perpln2 28734 isperp 28735 iscgra 28832 isinag 28861 isleag 28870 inftmrel 33170 isinftm 33171 fldextfld1 33677 fldextfld2 33678 metidval 33851 metidss 33852 faeval 34227 filnetlem2 36362 numiunnum 36453 areacirc 37700 lcvfbr 39002 cmtfvalN 39192 cvrfval 39250 dicssdvh 41169 aks6d1c1p1rcl 42090 pellexlem3 42819 pellexlem4 42820 pellexlem5 42821 pellex 42823 rfovcnvf1od 43994 fsovrfovd 43999 |
Copyright terms: Public domain | W3C validator |