Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo2 Structured version   Visualization version   GIF version

Theorem isdrngo2 36417
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo2
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
51, 2, 3, 4isdrngo1 36415 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
6 isdivrng2.5 . . . . . . 7 𝑈 = (GId‘𝐻)
71, 2, 4, 3, 6dvrunz 36413 . . . . . 6 (𝑅 ∈ DivRingOps → 𝑈𝑍)
85, 7sylbir 234 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑍)
9 grporndm 29452 . . . . . . . . . . . 12 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
109adantl 482 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
11 difss 4091 . . . . . . . . . . . . . . . . 17 (𝑋 ∖ {𝑍}) ⊆ 𝑋
12 xpss12 5648 . . . . . . . . . . . . . . . . 17 (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋))
1311, 11, 12mp2an 690 . . . . . . . . . . . . . . . 16 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)
141, 2, 4rngosm 36359 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
1514fdmd 6679 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋))
1613, 15sseqtrrid 3997 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
1716adantr 481 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
18 ssdmres 5960 . . . . . . . . . . . . . 14 (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
1917, 18sylib 217 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2019dmeqd 5861 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
21 dmxpid 5885 . . . . . . . . . . . 12 dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍})
2220, 21eqtrdi 2792 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2310, 22eqtrd 2776 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2423eleq2d 2823 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝑥 ∈ (𝑋 ∖ {𝑍})))
2524biimpar 478 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
26 eqid 2736 . . . . . . . . . . 11 ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
27 eqid 2736 . . . . . . . . . . 11 (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2826, 27grpoinvcl 29466 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2928adantll 712 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
30 eqid 2736 . . . . . . . . . . . 12 (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
3126, 30, 27grpolinv 29468 . . . . . . . . . . 11 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
3231adantll 712 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
332rngomndo 36394 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
34 mndomgmid 36330 . . . . . . . . . . . . . 14 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
3533, 34syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → 𝐻 ∈ (Magma ∩ ExId ))
3635adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝐻 ∈ (Magma ∩ ExId ))
3711, 4sseqtri 3980 . . . . . . . . . . . . . 14 (𝑋 ∖ {𝑍}) ⊆ ran 𝐺
382, 1rngorn1eq 36393 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)
3937, 38sseqtrid 3996 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
4039adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
411rneqi 5892 . . . . . . . . . . . . . . . 16 ran 𝐺 = ran (1st𝑅)
424, 41eqtri 2764 . . . . . . . . . . . . . . 15 𝑋 = ran (1st𝑅)
4342, 2, 6rngo1cl 36398 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝑈𝑋)
4443adantr 481 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑋)
45 eldifsn 4747 . . . . . . . . . . . . 13 (𝑈 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑈𝑋𝑈𝑍))
4644, 8, 45sylanbrc 583 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
47 grpomndo 36334 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp)
48 mndoismgmOLD 36329 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
4947, 48syl 17 . . . . . . . . . . . . 13 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
5049adantl 482 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
51 eqid 2736 . . . . . . . . . . . . 13 ran 𝐻 = ran 𝐻
52 eqid 2736 . . . . . . . . . . . . 13 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
5351, 6, 52exidresid 36338 . . . . . . . . . . . 12 (((𝐻 ∈ (Magma ∩ ExId ) ∧ (𝑋 ∖ {𝑍}) ⊆ ran 𝐻𝑈 ∈ (𝑋 ∖ {𝑍})) ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5436, 40, 46, 50, 53syl31anc 1373 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5554adantr 481 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5632, 55eqtrd 2776 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
57 oveq1 7364 . . . . . . . . . . 11 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥))
5857eqeq1d 2738 . . . . . . . . . 10 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
5958rspcev 3581 . . . . . . . . 9 ((((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6029, 56, 59syl2anc 584 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6125, 60syldan 591 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6223adantr 481 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
6362rexeqdv 3314 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
64 ovres 7520 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6564ancoms 459 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6665eqeq1d 2738 . . . . . . . . . 10 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (𝑦𝐻𝑥) = 𝑈))
6766rexbidva 3173 . . . . . . . . 9 (𝑥 ∈ (𝑋 ∖ {𝑍}) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
6867adantl 482 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
6963, 68bitrd 278 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
7061, 69mpbid 231 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
7170ralrimiva 3143 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
728, 71jca 512 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
731fvexi 6856 . . . . . . . 8 𝐺 ∈ V
7473rnex 7849 . . . . . . 7 ran 𝐺 ∈ V
754, 74eqeltri 2834 . . . . . 6 𝑋 ∈ V
76 difexg 5284 . . . . . 6 (𝑋 ∈ V → (𝑋 ∖ {𝑍}) ∈ V)
7775, 76mp1i 13 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝑋 ∖ {𝑍}) ∈ V)
7814ffnd 6669 . . . . . . . 8 (𝑅 ∈ RingOps → 𝐻 Fn (𝑋 × 𝑋))
7978adantr 481 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝐻 Fn (𝑋 × 𝑋))
80 fnssres 6624 . . . . . . 7 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
8179, 13, 80sylancl 586 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
82 ovres 7520 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
8382adantl 482 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
84 eldifi 4086 . . . . . . . . . . . 12 (𝑢 ∈ (𝑋 ∖ {𝑍}) → 𝑢𝑋)
85 eldifi 4086 . . . . . . . . . . . 12 (𝑣 ∈ (𝑋 ∖ {𝑍}) → 𝑣𝑋)
8684, 85anim12i 613 . . . . . . . . . . 11 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋))
871, 2, 4rngocl 36360 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐻𝑣) ∈ 𝑋)
88873expb 1120 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋)) → (𝑢𝐻𝑣) ∈ 𝑋)
8986, 88sylan2 593 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
9089adantlr 713 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
91 oveq2 7365 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝑦𝐻𝑥) = (𝑦𝐻𝑢))
9291eqeq1d 2738 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝑦𝐻𝑥) = 𝑈 ↔ (𝑦𝐻𝑢) = 𝑈))
9392rexbidv 3175 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9493rspcv 3577 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9594imdistanri 570 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})))
96 eldifsn 4747 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑣𝑋𝑣𝑍))
97 ssrexv 4011 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈))
9811, 97ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈)
991, 2, 3, 4, 6zerdivemp1x 36406 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
10098, 99syl3an3 1165 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
10184, 100syl3an2 1164 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
1021013expb 1120 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
103102imp 407 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍))
104103necon3d 2964 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → (𝑣𝑍 → (𝑢𝐻𝑣) ≠ 𝑍))
105104impr 455 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ (𝑣𝑋𝑣𝑍)) → (𝑢𝐻𝑣) ≠ 𝑍)
10696, 105sylan2b 594 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝐻𝑣) ≠ 𝑍)
107106an32s 650 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑢𝐻𝑣) ≠ 𝑍)
108107ancom2s 648 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
10995, 108sylan2 593 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
110109an42s 659 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
111110adantlrl 718 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
112 eldifsn 4747 . . . . . . . . 9 ((𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}) ↔ ((𝑢𝐻𝑣) ∈ 𝑋 ∧ (𝑢𝐻𝑣) ≠ 𝑍))
11390, 111, 112sylanbrc 583 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
11483, 113eqeltrd 2838 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
115114ralrimivva 3197 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
116 ffnov 7483 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ↔ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ∧ ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍})))
11781, 115, 116sylanbrc 583 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}))
1181133adantr3 1171 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
119 simpr3 1196 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑤 ∈ (𝑋 ∖ {𝑍}))
120118, 119ovresd 7521 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)𝐻𝑤))
121823adant3 1132 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
122121adantl 482 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
123122oveq1d 7372 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤))
124 ovres 7520 . . . . . . . . . 10 ((𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
1251243adant1 1130 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
126125adantl 482 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
127126oveq2d 7373 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣𝐻𝑤)))
128 simpr1 1194 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑢 ∈ (𝑋 ∖ {𝑍}))
129 fovcdm 7524 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
1301293adant3r1 1182 . . . . . . . . 9 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
131117, 130sylan 580 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
132128, 131ovresd 7521 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
133 eldifi 4086 . . . . . . . . . 10 (𝑤 ∈ (𝑋 ∖ {𝑍}) → 𝑤𝑋)
13484, 85, 1333anim123i 1151 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋𝑤𝑋))
1351, 2, 4rngoass 36365 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋𝑤𝑋)) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
136134, 135sylan2 593 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
137136adantlr 713 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
138127, 132, 1373eqtr4d 2786 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = ((𝑢𝐻𝑣)𝐻𝑤))
139120, 123, 1383eqtr4d 2786 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
14043anim1i 615 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (𝑈𝑋𝑈𝑍))
141140, 45sylibr 233 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
142141adantrr 715 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
143 ovres 7520 . . . . . . . 8 ((𝑈 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
144141, 143sylan 580 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
1452, 42, 6rngolidm 36396 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑢𝑋) → (𝑈𝐻𝑢) = 𝑢)
14684, 145sylan2 593 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
147146adantlr 713 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
148144, 147eqtrd 2776 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
149148adantlrr 719 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
15093rspcva 3579 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)
151 oveq1 7364 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝐻𝑢) = (𝑧𝐻𝑢))
152151eqeq1d 2738 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦𝐻𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
153152cbvrexvw 3226 . . . . . . . . . 10 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈)
154 ovres 7520 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑧𝐻𝑢))
155154eqeq1d 2738 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
156155ancoms 459 . . . . . . . . . . . 12 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑧 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
157156rexbidva 3173 . . . . . . . . . . 11 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈))
158157biimpar 478 . . . . . . . . . 10 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
159153, 158sylan2b 594 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
160150, 159syldan 591 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
161160ancoms 459 . . . . . . 7 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
162161adantll 712 . . . . . 6 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
163162adantlrl 718 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
16477, 117, 139, 142, 149, 163isgrpda 36414 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)
16572, 164impbida 799 . . 3 (𝑅 ∈ RingOps → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
166165pm5.32i 575 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
1675, 166bitri 274 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cin 3909  wss 3910  {csn 4586   × cxp 5631  dom cdm 5633  ran crn 5634  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  GrpOpcgr 29431  GIdcgi 29432  invcgn 29433   ExId cexid 36303  Magmacmagm 36307  MndOpcmndo 36325  RingOpscrngo 36353  DivRingOpscdrng 36407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-1st 7921  df-2nd 7922  df-1o 8412  df-en 8884  df-grpo 29435  df-gid 29436  df-ginv 29437  df-ablo 29487  df-ass 36302  df-exid 36304  df-mgmOLD 36308  df-sgrOLD 36320  df-mndo 36326  df-rngo 36354  df-drngo 36408
This theorem is referenced by:  isdrngo3  36418  divrngidl  36487
  Copyright terms: Public domain W3C validator