Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo2 Structured version   Visualization version   GIF version

Theorem isdrngo2 37952
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo2
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
51, 2, 3, 4isdrngo1 37950 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
6 isdivrng2.5 . . . . . . 7 𝑈 = (GId‘𝐻)
71, 2, 4, 3, 6dvrunz 37948 . . . . . 6 (𝑅 ∈ DivRingOps → 𝑈𝑍)
85, 7sylbir 235 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑍)
9 grporndm 30439 . . . . . . . . . . . 12 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
109adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
11 difss 4099 . . . . . . . . . . . . . . . . 17 (𝑋 ∖ {𝑍}) ⊆ 𝑋
12 xpss12 5653 . . . . . . . . . . . . . . . . 17 (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋))
1311, 11, 12mp2an 692 . . . . . . . . . . . . . . . 16 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)
141, 2, 4rngosm 37894 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
1514fdmd 6698 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋))
1613, 15sseqtrrid 3990 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
1716adantr 480 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
18 ssdmres 5984 . . . . . . . . . . . . . 14 (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
1917, 18sylib 218 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2019dmeqd 5869 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
21 dmxpid 5894 . . . . . . . . . . . 12 dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍})
2220, 21eqtrdi 2780 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2310, 22eqtrd 2764 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2423eleq2d 2814 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝑥 ∈ (𝑋 ∖ {𝑍})))
2524biimpar 477 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
26 eqid 2729 . . . . . . . . . . 11 ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
27 eqid 2729 . . . . . . . . . . 11 (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2826, 27grpoinvcl 30453 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2928adantll 714 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
30 eqid 2729 . . . . . . . . . . . 12 (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
3126, 30, 27grpolinv 30455 . . . . . . . . . . 11 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
3231adantll 714 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
332rngomndo 37929 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
34 mndomgmid 37865 . . . . . . . . . . . . . 14 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
3533, 34syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → 𝐻 ∈ (Magma ∩ ExId ))
3635adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝐻 ∈ (Magma ∩ ExId ))
3711, 4sseqtri 3995 . . . . . . . . . . . . . 14 (𝑋 ∖ {𝑍}) ⊆ ran 𝐺
382, 1rngorn1eq 37928 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)
3937, 38sseqtrid 3989 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
4039adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
411rneqi 5901 . . . . . . . . . . . . . . . 16 ran 𝐺 = ran (1st𝑅)
424, 41eqtri 2752 . . . . . . . . . . . . . . 15 𝑋 = ran (1st𝑅)
4342, 2, 6rngo1cl 37933 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝑈𝑋)
4443adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑋)
45 eldifsn 4750 . . . . . . . . . . . . 13 (𝑈 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑈𝑋𝑈𝑍))
4644, 8, 45sylanbrc 583 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
47 grpomndo 37869 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp)
48 mndoismgmOLD 37864 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
4947, 48syl 17 . . . . . . . . . . . . 13 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
5049adantl 481 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
51 eqid 2729 . . . . . . . . . . . . 13 ran 𝐻 = ran 𝐻
52 eqid 2729 . . . . . . . . . . . . 13 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
5351, 6, 52exidresid 37873 . . . . . . . . . . . 12 (((𝐻 ∈ (Magma ∩ ExId ) ∧ (𝑋 ∖ {𝑍}) ⊆ ran 𝐻𝑈 ∈ (𝑋 ∖ {𝑍})) ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5436, 40, 46, 50, 53syl31anc 1375 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5554adantr 480 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5632, 55eqtrd 2764 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
57 oveq1 7394 . . . . . . . . . . 11 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥))
5857eqeq1d 2731 . . . . . . . . . 10 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
5958rspcev 3588 . . . . . . . . 9 ((((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6029, 56, 59syl2anc 584 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6125, 60syldan 591 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6223adantr 480 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
6362rexeqdv 3300 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
64 ovres 7555 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6564ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6665eqeq1d 2731 . . . . . . . . . 10 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (𝑦𝐻𝑥) = 𝑈))
6766rexbidva 3155 . . . . . . . . 9 (𝑥 ∈ (𝑋 ∖ {𝑍}) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
6867adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
6963, 68bitrd 279 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
7061, 69mpbid 232 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
7170ralrimiva 3125 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
728, 71jca 511 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
731fvexi 6872 . . . . . . . 8 𝐺 ∈ V
7473rnex 7886 . . . . . . 7 ran 𝐺 ∈ V
754, 74eqeltri 2824 . . . . . 6 𝑋 ∈ V
76 difexg 5284 . . . . . 6 (𝑋 ∈ V → (𝑋 ∖ {𝑍}) ∈ V)
7775, 76mp1i 13 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝑋 ∖ {𝑍}) ∈ V)
7814ffnd 6689 . . . . . . . 8 (𝑅 ∈ RingOps → 𝐻 Fn (𝑋 × 𝑋))
7978adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝐻 Fn (𝑋 × 𝑋))
80 fnssres 6641 . . . . . . 7 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
8179, 13, 80sylancl 586 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
82 ovres 7555 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
8382adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
84 eldifi 4094 . . . . . . . . . . . 12 (𝑢 ∈ (𝑋 ∖ {𝑍}) → 𝑢𝑋)
85 eldifi 4094 . . . . . . . . . . . 12 (𝑣 ∈ (𝑋 ∖ {𝑍}) → 𝑣𝑋)
8684, 85anim12i 613 . . . . . . . . . . 11 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋))
871, 2, 4rngocl 37895 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐻𝑣) ∈ 𝑋)
88873expb 1120 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋)) → (𝑢𝐻𝑣) ∈ 𝑋)
8986, 88sylan2 593 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
9089adantlr 715 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
91 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝑦𝐻𝑥) = (𝑦𝐻𝑢))
9291eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝑦𝐻𝑥) = 𝑈 ↔ (𝑦𝐻𝑢) = 𝑈))
9392rexbidv 3157 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9493rspcv 3584 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9594imdistanri 569 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})))
96 eldifsn 4750 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑣𝑋𝑣𝑍))
97 ssrexv 4016 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈))
9811, 97ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈)
991, 2, 3, 4, 6zerdivemp1x 37941 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
10098, 99syl3an3 1165 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
10184, 100syl3an2 1164 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
1021013expb 1120 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
103102imp 406 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍))
104103necon3d 2946 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → (𝑣𝑍 → (𝑢𝐻𝑣) ≠ 𝑍))
105104impr 454 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ (𝑣𝑋𝑣𝑍)) → (𝑢𝐻𝑣) ≠ 𝑍)
10696, 105sylan2b 594 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝐻𝑣) ≠ 𝑍)
107106an32s 652 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑢𝐻𝑣) ≠ 𝑍)
108107ancom2s 650 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
10995, 108sylan2 593 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
110109an42s 661 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
111110adantlrl 720 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
112 eldifsn 4750 . . . . . . . . 9 ((𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}) ↔ ((𝑢𝐻𝑣) ∈ 𝑋 ∧ (𝑢𝐻𝑣) ≠ 𝑍))
11390, 111, 112sylanbrc 583 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
11483, 113eqeltrd 2828 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
115114ralrimivva 3180 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
116 ffnov 7515 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ↔ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ∧ ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍})))
11781, 115, 116sylanbrc 583 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}))
1181133adantr3 1172 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
119 simpr3 1197 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑤 ∈ (𝑋 ∖ {𝑍}))
120118, 119ovresd 7556 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)𝐻𝑤))
121823adant3 1132 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
122121adantl 481 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
123122oveq1d 7402 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤))
124 ovres 7555 . . . . . . . . . 10 ((𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
1251243adant1 1130 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
126125adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
127126oveq2d 7403 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣𝐻𝑤)))
128 simpr1 1195 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑢 ∈ (𝑋 ∖ {𝑍}))
129 fovcdm 7559 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
1301293adant3r1 1183 . . . . . . . . 9 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
131117, 130sylan 580 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
132128, 131ovresd 7556 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
133 eldifi 4094 . . . . . . . . . 10 (𝑤 ∈ (𝑋 ∖ {𝑍}) → 𝑤𝑋)
13484, 85, 1333anim123i 1151 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋𝑤𝑋))
1351, 2, 4rngoass 37900 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋𝑤𝑋)) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
136134, 135sylan2 593 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
137136adantlr 715 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
138127, 132, 1373eqtr4d 2774 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = ((𝑢𝐻𝑣)𝐻𝑤))
139120, 123, 1383eqtr4d 2774 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
14043anim1i 615 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (𝑈𝑋𝑈𝑍))
141140, 45sylibr 234 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
142141adantrr 717 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
143 ovres 7555 . . . . . . . 8 ((𝑈 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
144141, 143sylan 580 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
1452, 42, 6rngolidm 37931 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑢𝑋) → (𝑈𝐻𝑢) = 𝑢)
14684, 145sylan2 593 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
147146adantlr 715 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
148144, 147eqtrd 2764 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
149148adantlrr 721 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
15093rspcva 3586 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)
151 oveq1 7394 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝐻𝑢) = (𝑧𝐻𝑢))
152151eqeq1d 2731 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦𝐻𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
153152cbvrexvw 3216 . . . . . . . . . 10 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈)
154 ovres 7555 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑧𝐻𝑢))
155154eqeq1d 2731 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
156155ancoms 458 . . . . . . . . . . . 12 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑧 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
157156rexbidva 3155 . . . . . . . . . . 11 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈))
158157biimpar 477 . . . . . . . . . 10 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
159153, 158sylan2b 594 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
160150, 159syldan 591 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
161160ancoms 458 . . . . . . 7 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
162161adantll 714 . . . . . 6 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
163162adantlrl 720 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
16477, 117, 139, 142, 149, 163isgrpda 37949 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)
16572, 164impbida 800 . . 3 (𝑅 ∈ RingOps → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
166165pm5.32i 574 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
1675, 166bitri 275 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  cin 3913  wss 3914  {csn 4589   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  GrpOpcgr 30418  GIdcgi 30419  invcgn 30420   ExId cexid 37838  Magmacmagm 37842  MndOpcmndo 37860  RingOpscrngo 37888  DivRingOpscdrng 37942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889  df-drngo 37943
This theorem is referenced by:  isdrngo3  37953  divrngidl  38022
  Copyright terms: Public domain W3C validator