Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo2 Structured version   Visualization version   GIF version

Theorem isdrngo2 37959
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo2
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
51, 2, 3, 4isdrngo1 37957 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
6 isdivrng2.5 . . . . . . 7 𝑈 = (GId‘𝐻)
71, 2, 4, 3, 6dvrunz 37955 . . . . . 6 (𝑅 ∈ DivRingOps → 𝑈𝑍)
85, 7sylbir 235 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑍)
9 grporndm 30446 . . . . . . . . . . . 12 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
109adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
11 difss 4102 . . . . . . . . . . . . . . . . 17 (𝑋 ∖ {𝑍}) ⊆ 𝑋
12 xpss12 5656 . . . . . . . . . . . . . . . . 17 (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋))
1311, 11, 12mp2an 692 . . . . . . . . . . . . . . . 16 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)
141, 2, 4rngosm 37901 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
1514fdmd 6701 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋))
1613, 15sseqtrrid 3993 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
1716adantr 480 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻)
18 ssdmres 5987 . . . . . . . . . . . . . 14 (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
1917, 18sylib 218 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
2019dmeqd 5872 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
21 dmxpid 5897 . . . . . . . . . . . 12 dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍})
2220, 21eqtrdi 2781 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2310, 22eqtrd 2765 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
2423eleq2d 2815 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝑥 ∈ (𝑋 ∖ {𝑍})))
2524biimpar 477 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
26 eqid 2730 . . . . . . . . . . 11 ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
27 eqid 2730 . . . . . . . . . . 11 (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2826, 27grpoinvcl 30460 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2928adantll 714 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
30 eqid 2730 . . . . . . . . . . . 12 (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
3126, 30, 27grpolinv 30462 . . . . . . . . . . 11 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
3231adantll 714 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))))
332rngomndo 37936 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
34 mndomgmid 37872 . . . . . . . . . . . . . 14 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
3533, 34syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → 𝐻 ∈ (Magma ∩ ExId ))
3635adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝐻 ∈ (Magma ∩ ExId ))
3711, 4sseqtri 3998 . . . . . . . . . . . . . 14 (𝑋 ∖ {𝑍}) ⊆ ran 𝐺
382, 1rngorn1eq 37935 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)
3937, 38sseqtrid 3992 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
4039adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻)
411rneqi 5904 . . . . . . . . . . . . . . . 16 ran 𝐺 = ran (1st𝑅)
424, 41eqtri 2753 . . . . . . . . . . . . . . 15 𝑋 = ran (1st𝑅)
4342, 2, 6rngo1cl 37940 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝑈𝑋)
4443adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈𝑋)
45 eldifsn 4753 . . . . . . . . . . . . 13 (𝑈 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑈𝑋𝑈𝑍))
4644, 8, 45sylanbrc 583 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
47 grpomndo 37876 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp)
48 mndoismgmOLD 37871 . . . . . . . . . . . . . 14 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
4947, 48syl 17 . . . . . . . . . . . . 13 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
5049adantl 481 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma)
51 eqid 2730 . . . . . . . . . . . . 13 ran 𝐻 = ran 𝐻
52 eqid 2730 . . . . . . . . . . . . 13 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
5351, 6, 52exidresid 37880 . . . . . . . . . . . 12 (((𝐻 ∈ (Magma ∩ ExId ) ∧ (𝑋 ∖ {𝑍}) ⊆ ran 𝐻𝑈 ∈ (𝑋 ∖ {𝑍})) ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5436, 40, 46, 50, 53syl31anc 1375 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5554adantr 480 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈)
5632, 55eqtrd 2765 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
57 oveq1 7397 . . . . . . . . . . 11 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥))
5857eqeq1d 2732 . . . . . . . . . 10 (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
5958rspcev 3591 . . . . . . . . 9 ((((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6029, 56, 59syl2anc 584 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6125, 60syldan 591 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)
6223adantr 480 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍}))
6362rexeqdv 3302 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈))
64 ovres 7558 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6564ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥))
6665eqeq1d 2732 . . . . . . . . . 10 ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (𝑦𝐻𝑥) = 𝑈))
6766rexbidva 3156 . . . . . . . . 9 (𝑥 ∈ (𝑋 ∖ {𝑍}) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
6867adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
6963, 68bitrd 279 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
7061, 69mpbid 232 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
7170ralrimiva 3126 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)
728, 71jca 511 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
731fvexi 6875 . . . . . . . 8 𝐺 ∈ V
7473rnex 7889 . . . . . . 7 ran 𝐺 ∈ V
754, 74eqeltri 2825 . . . . . 6 𝑋 ∈ V
76 difexg 5287 . . . . . 6 (𝑋 ∈ V → (𝑋 ∖ {𝑍}) ∈ V)
7775, 76mp1i 13 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝑋 ∖ {𝑍}) ∈ V)
7814ffnd 6692 . . . . . . . 8 (𝑅 ∈ RingOps → 𝐻 Fn (𝑋 × 𝑋))
7978adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝐻 Fn (𝑋 × 𝑋))
80 fnssres 6644 . . . . . . 7 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
8179, 13, 80sylancl 586 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
82 ovres 7558 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
8382adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
84 eldifi 4097 . . . . . . . . . . . 12 (𝑢 ∈ (𝑋 ∖ {𝑍}) → 𝑢𝑋)
85 eldifi 4097 . . . . . . . . . . . 12 (𝑣 ∈ (𝑋 ∖ {𝑍}) → 𝑣𝑋)
8684, 85anim12i 613 . . . . . . . . . . 11 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋))
871, 2, 4rngocl 37902 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐻𝑣) ∈ 𝑋)
88873expb 1120 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋)) → (𝑢𝐻𝑣) ∈ 𝑋)
8986, 88sylan2 593 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
9089adantlr 715 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋)
91 oveq2 7398 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝑦𝐻𝑥) = (𝑦𝐻𝑢))
9291eqeq1d 2732 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝑦𝐻𝑥) = 𝑈 ↔ (𝑦𝐻𝑢) = 𝑈))
9392rexbidv 3158 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9493rspcv 3587 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈))
9594imdistanri 569 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})))
96 eldifsn 4753 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑣𝑋𝑣𝑍))
97 ssrexv 4019 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈))
9811, 97ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈)
991, 2, 3, 4, 6zerdivemp1x 37948 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦𝑋 (𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
10098, 99syl3an3 1165 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ 𝑢𝑋 ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
10184, 100syl3an2 1164 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
1021013expb 1120 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑣𝑋 → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍)))
103102imp 406 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → ((𝑢𝐻𝑣) = 𝑍𝑣 = 𝑍))
104103necon3d 2947 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣𝑋) → (𝑣𝑍 → (𝑢𝐻𝑣) ≠ 𝑍))
105104impr 454 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ (𝑣𝑋𝑣𝑍)) → (𝑢𝐻𝑣) ≠ 𝑍)
10696, 105sylan2b 594 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝐻𝑣) ≠ 𝑍)
107106an32s 652 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑢𝐻𝑣) ≠ 𝑍)
108107ancom2s 650 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
10995, 108sylan2 593 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
110109an42s 661 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
111110adantlrl 720 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍)
112 eldifsn 4753 . . . . . . . . 9 ((𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}) ↔ ((𝑢𝐻𝑣) ∈ 𝑋 ∧ (𝑢𝐻𝑣) ≠ 𝑍))
11390, 111, 112sylanbrc 583 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
11483, 113eqeltrd 2829 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
115114ralrimivva 3181 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))
116 ffnov 7518 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ↔ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ∧ ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍})))
11781, 115, 116sylanbrc 583 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}))
1181133adantr3 1172 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}))
119 simpr3 1197 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑤 ∈ (𝑋 ∖ {𝑍}))
120118, 119ovresd 7559 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)𝐻𝑤))
121823adant3 1132 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
122121adantl 481 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣))
123122oveq1d 7405 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤))
124 ovres 7558 . . . . . . . . . 10 ((𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
1251243adant1 1130 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
126125adantl 481 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤))
127126oveq2d 7406 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣𝐻𝑤)))
128 simpr1 1195 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑢 ∈ (𝑋 ∖ {𝑍}))
129 fovcdm 7562 . . . . . . . . . 10 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
1301293adant3r1 1183 . . . . . . . . 9 (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
131117, 130sylan 580 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍}))
132128, 131ovresd 7559 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
133 eldifi 4097 . . . . . . . . . 10 (𝑤 ∈ (𝑋 ∖ {𝑍}) → 𝑤𝑋)
13484, 85, 1333anim123i 1151 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝑋𝑣𝑋𝑤𝑋))
1351, 2, 4rngoass 37907 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ (𝑢𝑋𝑣𝑋𝑤𝑋)) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
136134, 135sylan2 593 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
137136adantlr 715 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤)))
138127, 132, 1373eqtr4d 2775 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = ((𝑢𝐻𝑣)𝐻𝑤))
139120, 123, 1383eqtr4d 2775 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)))
14043anim1i 615 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (𝑈𝑋𝑈𝑍))
141140, 45sylibr 234 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
142141adantrr 717 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝑈 ∈ (𝑋 ∖ {𝑍}))
143 ovres 7558 . . . . . . . 8 ((𝑈 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
144141, 143sylan 580 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢))
1452, 42, 6rngolidm 37938 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑢𝑋) → (𝑈𝐻𝑢) = 𝑢)
14684, 145sylan2 593 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
147146adantlr 715 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢)
148144, 147eqtrd 2765 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
149148adantlrr 721 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢)
15093rspcva 3589 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)
151 oveq1 7397 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝐻𝑢) = (𝑧𝐻𝑢))
152151eqeq1d 2732 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦𝐻𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
153152cbvrexvw 3217 . . . . . . . . . 10 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈)
154 ovres 7558 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑧𝐻𝑢))
155154eqeq1d 2732 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
156155ancoms 458 . . . . . . . . . . . 12 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑧 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈))
157156rexbidva 3156 . . . . . . . . . . 11 (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈))
158157biimpar 477 . . . . . . . . . 10 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
159153, 158sylan2b 594 . . . . . . . . 9 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
160150, 159syldan 591 . . . . . . . 8 ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
161160ancoms 458 . . . . . . 7 ((∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
162161adantll 714 . . . . . 6 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
163162adantlrl 720 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈)
16477, 117, 139, 142, 149, 163isgrpda 37956 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)
16572, 164impbida 800 . . 3 (𝑅 ∈ RingOps → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
166165pm5.32i 574 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
1675, 166bitri 275 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cin 3916  wss 3917  {csn 4592   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  GrpOpcgr 30425  GIdcgi 30426  invcgn 30427   ExId cexid 37845  Magmacmagm 37849  MndOpcmndo 37867  RingOpscrngo 37895  DivRingOpscdrng 37949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-1st 7971  df-2nd 7972  df-1o 8437  df-en 8922  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-ass 37844  df-exid 37846  df-mgmOLD 37850  df-sgrOLD 37862  df-mndo 37868  df-rngo 37896  df-drngo 37950
This theorem is referenced by:  isdrngo3  37960  divrngidl  38029
  Copyright terms: Public domain W3C validator