| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndmgm | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 18614 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp) | |
| 2 | sgrpmgm 18598 | . 2 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mgmcmgm 18512 Smgrpcsgrp 18592 Mndcmnd 18608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-sgrp 18593 df-mnd 18609 |
| This theorem is referenced by: mndcl 18616 mndplusf 18626 ismhm0 18664 mhmismgmhm 18665 mndissubm 18681 grpmgmd 18840 grpissubg 19025 srg1zr 20100 ringmgm 20129 c0mgm 20344 c0snmgmhm 20347 c0snmhm 20348 psdmplcl 22047 psdadd 22048 psdpw 22055 chfacfpmmulgsum2 22750 cayhamlem1 22751 idomrootle 26076 fidomncyc 42528 |
| Copyright terms: Public domain | W3C validator |