![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndmgm | Structured version Visualization version GIF version |
Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
Ref | Expression |
---|---|
mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndsgrp 18778 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp) | |
2 | sgrpmgm 18762 | . 2 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mgmcmgm 18676 Smgrpcsgrp 18756 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: mndcl 18780 mndplusf 18790 ismhm0 18825 mhmismgmhm 18826 mndissubm 18842 grpmgmd 19001 grpissubg 19186 srg1zr 20242 ringmgm 20271 c0mgm 20485 c0snmgmhm 20488 c0snmhm 20489 psdmplcl 22189 psdadd 22190 chfacfpmmulgsum2 22892 cayhamlem1 22893 idomrootle 26232 fidomncyc 42490 |
Copyright terms: Public domain | W3C validator |