| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndmgm | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 18722 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp) | |
| 2 | sgrpmgm 18706 | . 2 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Mgmcmgm 18620 Smgrpcsgrp 18700 Mndcmnd 18716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-sgrp 18701 df-mnd 18717 |
| This theorem is referenced by: mndcl 18724 mndplusf 18734 ismhm0 18772 mhmismgmhm 18773 mndissubm 18789 grpmgmd 18948 grpissubg 19133 srg1zr 20180 ringmgm 20209 c0mgm 20427 c0snmgmhm 20430 c0snmhm 20431 psdmplcl 22114 psdadd 22115 psdpw 22122 chfacfpmmulgsum2 22819 cayhamlem1 22820 idomrootle 26148 fidomncyc 42508 |
| Copyright terms: Public domain | W3C validator |