MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndmgm Structured version   Visualization version   GIF version

Theorem mndmgm 18390
Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
Assertion
Ref Expression
mndmgm (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)

Proof of Theorem mndmgm
StepHypRef Expression
1 mndsgrp 18389 . 2 (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp)
2 sgrpmgm 18378 . 2 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
31, 2syl 17 1 (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Mgmcmgm 18322  Smgrpcsgrp 18372  Mndcmnd 18383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-nul 5234
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-ov 7274  df-sgrp 18373  df-mnd 18384
This theorem is referenced by:  mndcl  18391  mndplusf  18401  mndissubm  18444  grpissubg  18773  srg1zr  19763  ringmgm  19792  chfacfpmmulgsum2  22012  cayhamlem1  22013  ofldchr  31509  idomrootle  41017  ismhm0  45328  mhmismgmhm  45329  c0mgm  45436  c0snmgmhm  45441  c0snmhm  45442
  Copyright terms: Public domain W3C validator