MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndmgm Structured version   Visualization version   GIF version

Theorem mndmgm 18779
Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
Assertion
Ref Expression
mndmgm (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)

Proof of Theorem mndmgm
StepHypRef Expression
1 mndsgrp 18778 . 2 (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp)
2 sgrpmgm 18762 . 2 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
31, 2syl 17 1 (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Mgmcmgm 18676  Smgrpcsgrp 18756  Mndcmnd 18772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-sgrp 18757  df-mnd 18773
This theorem is referenced by:  mndcl  18780  mndplusf  18790  ismhm0  18825  mhmismgmhm  18826  mndissubm  18842  grpmgmd  19001  grpissubg  19186  srg1zr  20242  ringmgm  20271  c0mgm  20485  c0snmgmhm  20488  c0snmhm  20489  psdmplcl  22189  psdadd  22190  chfacfpmmulgsum2  22892  cayhamlem1  22893  idomrootle  26232  fidomncyc  42490
  Copyright terms: Public domain W3C validator