| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndmgm | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 18649 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp) | |
| 2 | sgrpmgm 18633 | . 2 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mgmcmgm 18547 Smgrpcsgrp 18627 Mndcmnd 18643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-sgrp 18628 df-mnd 18644 |
| This theorem is referenced by: mndcl 18651 mndplusf 18661 ismhm0 18699 mhmismgmhm 18700 mndissubm 18716 grpmgmd 18875 grpissubg 19060 srg1zr 20135 ringmgm 20164 c0mgm 20379 c0snmgmhm 20382 c0snmhm 20383 psdmplcl 22082 psdadd 22083 psdpw 22090 chfacfpmmulgsum2 22785 cayhamlem1 22786 idomrootle 26111 fidomncyc 42516 |
| Copyright terms: Public domain | W3C validator |