| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndmgm | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 18648 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp) | |
| 2 | sgrpmgm 18632 | . 2 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Mgmcmgm 18546 Smgrpcsgrp 18626 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: mndcl 18650 mndplusf 18660 ismhm0 18698 mhmismgmhm 18699 mndissubm 18715 grpmgmd 18874 grpissubg 19059 srg1zr 20133 ringmgm 20162 c0mgm 20377 c0snmgmhm 20380 c0snmhm 20381 psdmplcl 22077 psdadd 22078 psdpw 22085 chfacfpmmulgsum2 22780 cayhamlem1 22781 idomrootle 26105 fidomncyc 42627 |
| Copyright terms: Public domain | W3C validator |