MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndmgm Structured version   Visualization version   GIF version

Theorem mndmgm 18767
Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
Assertion
Ref Expression
mndmgm (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)

Proof of Theorem mndmgm
StepHypRef Expression
1 mndsgrp 18766 . 2 (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp)
2 sgrpmgm 18750 . 2 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
31, 2syl 17 1 (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Mgmcmgm 18664  Smgrpcsgrp 18744  Mndcmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-sgrp 18745  df-mnd 18761
This theorem is referenced by:  mndcl  18768  mndplusf  18778  ismhm0  18816  mhmismgmhm  18817  mndissubm  18833  grpmgmd  18992  grpissubg  19177  srg1zr  20233  ringmgm  20262  c0mgm  20476  c0snmgmhm  20479  c0snmhm  20480  psdmplcl  22184  psdadd  22185  chfacfpmmulgsum2  22887  cayhamlem1  22888  idomrootle  26227  fidomncyc  42522
  Copyright terms: Public domain W3C validator