| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndmgm | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 18718 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp) | |
| 2 | sgrpmgm 18702 | . 2 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Mgmcmgm 18616 Smgrpcsgrp 18696 Mndcmnd 18712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-sgrp 18697 df-mnd 18713 |
| This theorem is referenced by: mndcl 18720 mndplusf 18730 ismhm0 18768 mhmismgmhm 18769 mndissubm 18785 grpmgmd 18944 grpissubg 19129 srg1zr 20175 ringmgm 20204 c0mgm 20419 c0snmgmhm 20422 c0snmhm 20423 psdmplcl 22100 psdadd 22101 psdpw 22108 chfacfpmmulgsum2 22803 cayhamlem1 22804 idomrootle 26130 fidomncyc 42558 |
| Copyright terms: Public domain | W3C validator |