| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismndo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ismndo.1 | ⊢ 𝑋 = dom dom 𝐺 |
| Ref | Expression |
|---|---|
| ismndo | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mndo 37868 | . . 3 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐺 ∈ MndOp ↔ 𝐺 ∈ (SemiGrp ∩ ExId )) |
| 3 | elin 3933 | . . 3 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId )) | |
| 4 | ismndo.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
| 5 | 4 | isexid 37848 | . . . 4 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
| 6 | 5 | anbi2d 630 | . . 3 ⊢ (𝐺 ∈ 𝐴 → ((𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| 7 | 3, 6 | bitrid 283 | . 2 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| 8 | 2, 7 | bitrid 283 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∩ cin 3916 dom cdm 5641 (class class class)co 7390 ExId cexid 37845 SemiGrpcsem 37861 MndOpcmndo 37867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-exid 37846 df-mndo 37868 |
| This theorem is referenced by: ismndo1 37874 |
| Copyright terms: Public domain | W3C validator |