Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismndo | Structured version Visualization version GIF version |
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ismndo.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
ismndo | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mndo 36123 | . . 3 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝐺 ∈ MndOp ↔ 𝐺 ∈ (SemiGrp ∩ ExId )) |
3 | elin 3913 | . . 3 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId )) | |
4 | ismndo.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
5 | 4 | isexid 36103 | . . . 4 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
6 | 5 | anbi2d 629 | . . 3 ⊢ (𝐺 ∈ 𝐴 → ((𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
7 | 3, 6 | bitrid 282 | . 2 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
8 | 2, 7 | bitrid 282 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ∩ cin 3896 dom cdm 5614 (class class class)co 7329 ExId cexid 36100 SemiGrpcsem 36116 MndOpcmndo 36122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-dm 5624 df-iota 6425 df-fv 6481 df-ov 7332 df-exid 36101 df-mndo 36123 |
This theorem is referenced by: ismndo1 36129 |
Copyright terms: Public domain | W3C validator |