Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismndo Structured version   Visualization version   GIF version

Theorem ismndo 37873
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
ismndo (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem ismndo
StepHypRef Expression
1 df-mndo 37868 . . 3 MndOp = (SemiGrp ∩ ExId )
21eleq2i 2821 . 2 (𝐺 ∈ MndOp ↔ 𝐺 ∈ (SemiGrp ∩ ExId ))
3 elin 3933 . . 3 (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ))
4 ismndo.1 . . . . 5 𝑋 = dom dom 𝐺
54isexid 37848 . . . 4 (𝐺𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
65anbi2d 630 . . 3 (𝐺𝐴 → ((𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
73, 6bitrid 283 . 2 (𝐺𝐴 → (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
82, 7bitrid 283 1 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  dom cdm 5641  (class class class)co 7390   ExId cexid 37845  SemiGrpcsem 37861  MndOpcmndo 37867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-dm 5651  df-iota 6467  df-fv 6522  df-ov 7393  df-exid 37846  df-mndo 37868
This theorem is referenced by:  ismndo1  37874
  Copyright terms: Public domain W3C validator