| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismndo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ismndo.1 | ⊢ 𝑋 = dom dom 𝐺 |
| Ref | Expression |
|---|---|
| ismndo | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mndo 37833 | . . 3 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐺 ∈ MndOp ↔ 𝐺 ∈ (SemiGrp ∩ ExId )) |
| 3 | elin 3947 | . . 3 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId )) | |
| 4 | ismndo.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
| 5 | 4 | isexid 37813 | . . . 4 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
| 6 | 5 | anbi2d 630 | . . 3 ⊢ (𝐺 ∈ 𝐴 → ((𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| 7 | 3, 6 | bitrid 283 | . 2 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| 8 | 2, 7 | bitrid 283 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∩ cin 3930 dom cdm 5665 (class class class)co 7413 ExId cexid 37810 SemiGrpcsem 37826 MndOpcmndo 37832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-dm 5675 df-iota 6494 df-fv 6549 df-ov 7416 df-exid 37811 df-mndo 37833 |
| This theorem is referenced by: ismndo1 37839 |
| Copyright terms: Public domain | W3C validator |