Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismndo2 Structured version   Visualization version   GIF version

Theorem ismndo2 36333
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ismndo2 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem ismndo2
StepHypRef Expression
1 ismndo2.1 . . . 4 𝑋 = ran 𝐺
2 mndomgmid 36330 . . . . 5 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
3 rngopidOLD 36312 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 . . . 4 (𝐺 ∈ MndOp → ran 𝐺 = dom dom 𝐺)
51, 4eqtrid 2788 . . 3 (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺)
65a1i 11 . 2 (𝐺𝐴 → (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺))
7 fdm 6677 . . . . . 6 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
87dmeqd 5861 . . . . 5 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom dom 𝐺 = dom (𝑋 × 𝑋))
9 dmxpid 5885 . . . . 5 dom (𝑋 × 𝑋) = 𝑋
108, 9eqtr2di 2793 . . . 4 (𝐺:(𝑋 × 𝑋)⟶𝑋𝑋 = dom dom 𝐺)
11103ad2ant1 1133 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺)
1211a1i 11 . 2 (𝐺𝐴 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺))
13 eqid 2736 . . . 4 dom dom 𝐺 = dom dom 𝐺
1413ismndo1 36332 . . 3 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
15 xpid11 5887 . . . . . . 7 ((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ↔ 𝑋 = dom dom 𝐺)
1615biimpri 227 . . . . . 6 (𝑋 = dom dom 𝐺 → (𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺))
17 feq23 6652 . . . . . 6 (((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ∧ 𝑋 = dom dom 𝐺) → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
1816, 17mpancom 686 . . . . 5 (𝑋 = dom dom 𝐺 → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
19 raleq 3309 . . . . . . 7 (𝑋 = dom dom 𝐺 → (∀𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2019raleqbi1dv 3307 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2120raleqbi1dv 3307 . . . . 5 (𝑋 = dom dom 𝐺 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
22 raleq 3309 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∀𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2322rexeqbi1dv 3308 . . . . 5 (𝑋 = dom dom 𝐺 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2418, 21, 233anbi123d 1436 . . . 4 (𝑋 = dom dom 𝐺 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
2524bibi2d 342 . . 3 (𝑋 = dom dom 𝐺 → ((𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) ↔ (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
2614, 25syl5ibrcom 246 . 2 (𝐺𝐴 → (𝑋 = dom dom 𝐺 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
276, 12, 26pm5.21ndd 380 1 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cin 3909   × cxp 5631  dom cdm 5633  ran crn 5634  wf 6492  (class class class)co 7357   ExId cexid 36303  Magmacmagm 36307  MndOpcmndo 36325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504  df-ov 7360  df-ass 36302  df-exid 36304  df-mgmOLD 36308  df-sgrOLD 36320  df-mndo 36326
This theorem is referenced by:  grpomndo  36334
  Copyright terms: Public domain W3C validator