Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismndo2 Structured version   Visualization version   GIF version

Theorem ismndo2 37336
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ismndo2 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem ismndo2
StepHypRef Expression
1 ismndo2.1 . . . 4 𝑋 = ran 𝐺
2 mndomgmid 37333 . . . . 5 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
3 rngopidOLD 37315 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 . . . 4 (𝐺 ∈ MndOp → ran 𝐺 = dom dom 𝐺)
51, 4eqtrid 2779 . . 3 (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺)
65a1i 11 . 2 (𝐺𝐴 → (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺))
7 fdm 6725 . . . . . 6 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
87dmeqd 5902 . . . . 5 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom dom 𝐺 = dom (𝑋 × 𝑋))
9 dmxpid 5926 . . . . 5 dom (𝑋 × 𝑋) = 𝑋
108, 9eqtr2di 2784 . . . 4 (𝐺:(𝑋 × 𝑋)⟶𝑋𝑋 = dom dom 𝐺)
11103ad2ant1 1131 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺)
1211a1i 11 . 2 (𝐺𝐴 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺))
13 eqid 2727 . . . 4 dom dom 𝐺 = dom dom 𝐺
1413ismndo1 37335 . . 3 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
15 xpid11 5928 . . . . . . 7 ((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ↔ 𝑋 = dom dom 𝐺)
1615biimpri 227 . . . . . 6 (𝑋 = dom dom 𝐺 → (𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺))
17 feq23 6700 . . . . . 6 (((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ∧ 𝑋 = dom dom 𝐺) → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
1816, 17mpancom 687 . . . . 5 (𝑋 = dom dom 𝐺 → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
19 raleq 3317 . . . . . . 7 (𝑋 = dom dom 𝐺 → (∀𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2019raleqbi1dv 3328 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2120raleqbi1dv 3328 . . . . 5 (𝑋 = dom dom 𝐺 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
22 raleq 3317 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∀𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2322rexeqbi1dv 3329 . . . . 5 (𝑋 = dom dom 𝐺 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2418, 21, 233anbi123d 1433 . . . 4 (𝑋 = dom dom 𝐺 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
2524bibi2d 342 . . 3 (𝑋 = dom dom 𝐺 → ((𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) ↔ (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
2614, 25syl5ibrcom 246 . 2 (𝐺𝐴 → (𝑋 = dom dom 𝐺 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
276, 12, 26pm5.21ndd 379 1 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  cin 3943   × cxp 5670  dom cdm 5672  ran crn 5673  wf 6538  (class class class)co 7414   ExId cexid 37306  Magmacmagm 37310  MndOpcmndo 37328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-ov 7417  df-ass 37305  df-exid 37307  df-mgmOLD 37311  df-sgrOLD 37323  df-mndo 37329
This theorem is referenced by:  grpomndo  37337
  Copyright terms: Public domain W3C validator