Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismndo2 Structured version   Visualization version   GIF version

Theorem ismndo2 35156
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ismndo2 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem ismndo2
StepHypRef Expression
1 ismndo2.1 . . . 4 𝑋 = ran 𝐺
2 mndomgmid 35153 . . . . 5 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
3 rngopidOLD 35135 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 . . . 4 (𝐺 ∈ MndOp → ran 𝐺 = dom dom 𝐺)
51, 4syl5eq 2871 . . 3 (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺)
65a1i 11 . 2 (𝐺𝐴 → (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺))
7 fdm 6525 . . . . . 6 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
87dmeqd 5777 . . . . 5 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom dom 𝐺 = dom (𝑋 × 𝑋))
9 dmxpid 5803 . . . . 5 dom (𝑋 × 𝑋) = 𝑋
108, 9syl6req 2876 . . . 4 (𝐺:(𝑋 × 𝑋)⟶𝑋𝑋 = dom dom 𝐺)
11103ad2ant1 1129 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺)
1211a1i 11 . 2 (𝐺𝐴 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺))
13 eqid 2824 . . . 4 dom dom 𝐺 = dom dom 𝐺
1413ismndo1 35155 . . 3 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
15 xpid11 5805 . . . . . . 7 ((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ↔ 𝑋 = dom dom 𝐺)
1615biimpri 230 . . . . . 6 (𝑋 = dom dom 𝐺 → (𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺))
17 feq23 6501 . . . . . 6 (((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ∧ 𝑋 = dom dom 𝐺) → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
1816, 17mpancom 686 . . . . 5 (𝑋 = dom dom 𝐺 → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
19 raleq 3408 . . . . . . 7 (𝑋 = dom dom 𝐺 → (∀𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2019raleqbi1dv 3406 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2120raleqbi1dv 3406 . . . . 5 (𝑋 = dom dom 𝐺 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
22 raleq 3408 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∀𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2322rexeqbi1dv 3407 . . . . 5 (𝑋 = dom dom 𝐺 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2418, 21, 233anbi123d 1432 . . . 4 (𝑋 = dom dom 𝐺 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
2524bibi2d 345 . . 3 (𝑋 = dom dom 𝐺 → ((𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) ↔ (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
2614, 25syl5ibrcom 249 . 2 (𝐺𝐴 → (𝑋 = dom dom 𝐺 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
276, 12, 26pm5.21ndd 383 1 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  cin 3938   × cxp 5556  dom cdm 5558  ran crn 5559  wf 6354  (class class class)co 7159   ExId cexid 35126  Magmacmagm 35130  MndOpcmndo 35148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364  df-fv 6366  df-ov 7162  df-ass 35125  df-exid 35127  df-mgmOLD 35131  df-sgrOLD 35143  df-mndo 35149
This theorem is referenced by:  grpomndo  35157
  Copyright terms: Public domain W3C validator