Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidmlem Structured version   Visualization version   GIF version

Theorem rngoidmlem 37918
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1 𝐻 = (2nd𝑅)
uridm.2 𝑋 = ran (1st𝑅)
uridm.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngoidmlem ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))

Proof of Theorem rngoidmlem
StepHypRef Expression
1 uridm.1 . . . . 5 𝐻 = (2nd𝑅)
21rngomndo 37917 . . . 4 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
3 mndomgmid 37853 . . . 4 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
4 eqid 2729 . . . . . 6 ran 𝐻 = ran 𝐻
5 uridm.3 . . . . . 6 𝑈 = (GId‘𝐻)
64, 5cmpidelt 37841 . . . . 5 ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
76ex 412 . . . 4 (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
82, 3, 73syl 18 . . 3 (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
9 eqid 2729 . . . . 5 (1st𝑅) = (1st𝑅)
101, 9rngorn1eq 37916 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = ran 𝐻)
11 uridm.2 . . . . 5 𝑋 = ran (1st𝑅)
12 eqtr 2749 . . . . . 6 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → 𝑋 = ran 𝐻)
13 simpl 482 . . . . . . . . 9 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → 𝑋 = ran 𝐻)
1413eleq2d 2814 . . . . . . . 8 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → (𝐴𝑋𝐴 ∈ ran 𝐻))
1514imbi1d 341 . . . . . . 7 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
1615ex 412 . . . . . 6 (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1712, 16syl 17 . . . . 5 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1811, 17mpan 690 . . . 4 (ran (1st𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1910, 18mpcom 38 . . 3 (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
208, 19mpbird 257 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
2120imp 406 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3904  ran crn 5624  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  GIdcgi 30452   ExId cexid 37826  Magmacmagm 37830  MndOpcmndo 37848  RingOpscrngo 37876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-riota 7310  df-ov 7356  df-1st 7931  df-2nd 7932  df-grpo 30455  df-gid 30456  df-ablo 30507  df-ass 37825  df-exid 37827  df-mgmOLD 37831  df-sgrOLD 37843  df-mndo 37849  df-rngo 37877
This theorem is referenced by:  rngolidm  37919  rngoridm  37920
  Copyright terms: Public domain W3C validator