Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidmlem Structured version   Visualization version   GIF version

Theorem rngoidmlem 37930
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1 𝐻 = (2nd𝑅)
uridm.2 𝑋 = ran (1st𝑅)
uridm.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngoidmlem ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))

Proof of Theorem rngoidmlem
StepHypRef Expression
1 uridm.1 . . . . 5 𝐻 = (2nd𝑅)
21rngomndo 37929 . . . 4 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
3 mndomgmid 37865 . . . 4 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
4 eqid 2729 . . . . . 6 ran 𝐻 = ran 𝐻
5 uridm.3 . . . . . 6 𝑈 = (GId‘𝐻)
64, 5cmpidelt 37853 . . . . 5 ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
76ex 412 . . . 4 (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
82, 3, 73syl 18 . . 3 (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
9 eqid 2729 . . . . 5 (1st𝑅) = (1st𝑅)
101, 9rngorn1eq 37928 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = ran 𝐻)
11 uridm.2 . . . . 5 𝑋 = ran (1st𝑅)
12 eqtr 2749 . . . . . 6 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → 𝑋 = ran 𝐻)
13 simpl 482 . . . . . . . . 9 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → 𝑋 = ran 𝐻)
1413eleq2d 2814 . . . . . . . 8 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → (𝐴𝑋𝐴 ∈ ran 𝐻))
1514imbi1d 341 . . . . . . 7 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
1615ex 412 . . . . . 6 (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1712, 16syl 17 . . . . 5 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1811, 17mpan 690 . . . 4 (ran (1st𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1910, 18mpcom 38 . . 3 (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
208, 19mpbird 257 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
2120imp 406 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  GIdcgi 30419   ExId cexid 37838  Magmacmagm 37842  MndOpcmndo 37860  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gid 30423  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889
This theorem is referenced by:  rngolidm  37931  rngoridm  37932
  Copyright terms: Public domain W3C validator