Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidmlem Structured version   Visualization version   GIF version

Theorem rngoidmlem 37982
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1 𝐻 = (2nd𝑅)
uridm.2 𝑋 = ran (1st𝑅)
uridm.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngoidmlem ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))

Proof of Theorem rngoidmlem
StepHypRef Expression
1 uridm.1 . . . . 5 𝐻 = (2nd𝑅)
21rngomndo 37981 . . . 4 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
3 mndomgmid 37917 . . . 4 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
4 eqid 2731 . . . . . 6 ran 𝐻 = ran 𝐻
5 uridm.3 . . . . . 6 𝑈 = (GId‘𝐻)
64, 5cmpidelt 37905 . . . . 5 ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
76ex 412 . . . 4 (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
82, 3, 73syl 18 . . 3 (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
9 eqid 2731 . . . . 5 (1st𝑅) = (1st𝑅)
101, 9rngorn1eq 37980 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = ran 𝐻)
11 uridm.2 . . . . 5 𝑋 = ran (1st𝑅)
12 eqtr 2751 . . . . . 6 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → 𝑋 = ran 𝐻)
13 simpl 482 . . . . . . . . 9 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → 𝑋 = ran 𝐻)
1413eleq2d 2817 . . . . . . . 8 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → (𝐴𝑋𝐴 ∈ ran 𝐻))
1514imbi1d 341 . . . . . . 7 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
1615ex 412 . . . . . 6 (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1712, 16syl 17 . . . . 5 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1811, 17mpan 690 . . . 4 (ran (1st𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1910, 18mpcom 38 . . 3 (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
208, 19mpbird 257 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
2120imp 406 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3901  ran crn 5617  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  GIdcgi 30468   ExId cexid 37890  Magmacmagm 37894  MndOpcmndo 37912  RingOpscrngo 37940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-grpo 30471  df-gid 30472  df-ablo 30523  df-ass 37889  df-exid 37891  df-mgmOLD 37895  df-sgrOLD 37907  df-mndo 37913  df-rngo 37941
This theorem is referenced by:  rngolidm  37983  rngoridm  37984
  Copyright terms: Public domain W3C validator