![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidmlem | Structured version Visualization version GIF version |
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
uridm.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngoidmlem | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uridm.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | 1 | rngomndo 37895 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
3 | mndomgmid 37831 | . . . 4 ⊢ (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId )) | |
4 | eqid 2740 | . . . . . 6 ⊢ ran 𝐻 = ran 𝐻 | |
5 | uridm.3 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
6 | 4, 5 | cmpidelt 37819 | . . . . 5 ⊢ ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
7 | 6 | ex 412 | . . . 4 ⊢ (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
8 | 2, 3, 7 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
9 | eqid 2740 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
10 | 1, 9 | rngorn1eq 37894 | . . . 4 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran 𝐻) |
11 | uridm.2 | . . . . 5 ⊢ 𝑋 = ran (1st ‘𝑅) | |
12 | eqtr 2763 | . . . . . 6 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → 𝑋 = ran 𝐻) | |
13 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → 𝑋 = ran 𝐻) | |
14 | 13 | eleq2d 2830 | . . . . . . . 8 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ran 𝐻)) |
15 | 14 | imbi1d 341 | . . . . . . 7 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
16 | 15 | ex 412 | . . . . . 6 ⊢ (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
17 | 12, 16 | syl 17 | . . . . 5 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
18 | 11, 17 | mpan 689 | . . . 4 ⊢ (ran (1st ‘𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
19 | 10, 18 | mpcom 38 | . . 3 ⊢ (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
20 | 8, 19 | mpbird 257 | . 2 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
21 | 20 | imp 406 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ran crn 5701 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 GIdcgi 30522 ExId cexid 37804 Magmacmagm 37808 MndOpcmndo 37826 RingOpscrngo 37854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-riota 7404 df-ov 7451 df-1st 8030 df-2nd 8031 df-grpo 30525 df-gid 30526 df-ablo 30577 df-ass 37803 df-exid 37805 df-mgmOLD 37809 df-sgrOLD 37821 df-mndo 37827 df-rngo 37855 |
This theorem is referenced by: rngolidm 37897 rngoridm 37898 |
Copyright terms: Public domain | W3C validator |