| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidmlem | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
| uridm.3 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| rngoidmlem | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uridm.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 2 | 1 | rngomndo 37998 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
| 3 | mndomgmid 37934 | . . . 4 ⊢ (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId )) | |
| 4 | eqid 2733 | . . . . . 6 ⊢ ran 𝐻 = ran 𝐻 | |
| 5 | uridm.3 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
| 6 | 4, 5 | cmpidelt 37922 | . . . . 5 ⊢ ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
| 7 | 6 | ex 412 | . . . 4 ⊢ (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
| 8 | 2, 3, 7 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
| 9 | eqid 2733 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 10 | 1, 9 | rngorn1eq 37997 | . . . 4 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran 𝐻) |
| 11 | uridm.2 | . . . . 5 ⊢ 𝑋 = ran (1st ‘𝑅) | |
| 12 | eqtr 2753 | . . . . . 6 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → 𝑋 = ran 𝐻) | |
| 13 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → 𝑋 = ran 𝐻) | |
| 14 | 13 | eleq2d 2819 | . . . . . . . 8 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ran 𝐻)) |
| 15 | 14 | imbi1d 341 | . . . . . . 7 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
| 17 | 12, 16 | syl 17 | . . . . 5 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
| 18 | 11, 17 | mpan 690 | . . . 4 ⊢ (ran (1st ‘𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
| 19 | 10, 18 | mpcom 38 | . . 3 ⊢ (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
| 20 | 8, 19 | mpbird 257 | . 2 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
| 21 | 20 | imp 406 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ran crn 5622 ‘cfv 6488 (class class class)co 7354 1st c1st 7927 2nd c2nd 7928 GIdcgi 30474 ExId cexid 37907 Magmacmagm 37911 MndOpcmndo 37929 RingOpscrngo 37957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fo 6494 df-fv 6496 df-riota 7311 df-ov 7357 df-1st 7929 df-2nd 7930 df-grpo 30477 df-gid 30478 df-ablo 30529 df-ass 37906 df-exid 37908 df-mgmOLD 37912 df-sgrOLD 37924 df-mndo 37930 df-rngo 37958 |
| This theorem is referenced by: rngolidm 38000 rngoridm 38001 |
| Copyright terms: Public domain | W3C validator |