Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidmlem | Structured version Visualization version GIF version |
Description: The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
uridm.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngoidmlem | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uridm.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | 1 | rngomndo 35830 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
3 | mndomgmid 35766 | . . . 4 ⊢ (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId )) | |
4 | eqid 2737 | . . . . . 6 ⊢ ran 𝐻 = ran 𝐻 | |
5 | uridm.3 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
6 | 4, 5 | cmpidelt 35754 | . . . . 5 ⊢ ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
7 | 6 | ex 416 | . . . 4 ⊢ (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
8 | 2, 3, 7 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
9 | eqid 2737 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
10 | 1, 9 | rngorn1eq 35829 | . . . 4 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran 𝐻) |
11 | uridm.2 | . . . . 5 ⊢ 𝑋 = ran (1st ‘𝑅) | |
12 | eqtr 2760 | . . . . . 6 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → 𝑋 = ran 𝐻) | |
13 | simpl 486 | . . . . . . . . 9 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → 𝑋 = ran 𝐻) | |
14 | 13 | eleq2d 2823 | . . . . . . . 8 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ran 𝐻)) |
15 | 14 | imbi1d 345 | . . . . . . 7 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
16 | 15 | ex 416 | . . . . . 6 ⊢ (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
17 | 12, 16 | syl 17 | . . . . 5 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
18 | 11, 17 | mpan 690 | . . . 4 ⊢ (ran (1st ‘𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
19 | 10, 18 | mpcom 38 | . . 3 ⊢ (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
20 | 8, 19 | mpbird 260 | . 2 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
21 | 20 | imp 410 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 ran crn 5552 ‘cfv 6380 (class class class)co 7213 1st c1st 7759 2nd c2nd 7760 GIdcgi 28571 ExId cexid 35739 Magmacmagm 35743 MndOpcmndo 35761 RingOpscrngo 35789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fo 6386 df-fv 6388 df-riota 7170 df-ov 7216 df-1st 7761 df-2nd 7762 df-grpo 28574 df-gid 28575 df-ablo 28626 df-ass 35738 df-exid 35740 df-mgmOLD 35744 df-sgrOLD 35756 df-mndo 35762 df-rngo 35790 |
This theorem is referenced by: rngolidm 35832 rngoridm 35833 |
Copyright terms: Public domain | W3C validator |