| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidmlem | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
| uridm.3 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| rngoidmlem | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uridm.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 2 | 1 | rngomndo 37964 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
| 3 | mndomgmid 37900 | . . . 4 ⊢ (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId )) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ ran 𝐻 = ran 𝐻 | |
| 5 | uridm.3 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
| 6 | 4, 5 | cmpidelt 37888 | . . . . 5 ⊢ ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
| 7 | 6 | ex 412 | . . . 4 ⊢ (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
| 8 | 2, 3, 7 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
| 9 | eqid 2736 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 10 | 1, 9 | rngorn1eq 37963 | . . . 4 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran 𝐻) |
| 11 | uridm.2 | . . . . 5 ⊢ 𝑋 = ran (1st ‘𝑅) | |
| 12 | eqtr 2756 | . . . . . 6 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → 𝑋 = ran 𝐻) | |
| 13 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → 𝑋 = ran 𝐻) | |
| 14 | 13 | eleq2d 2821 | . . . . . . . 8 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ran 𝐻)) |
| 15 | 14 | imbi1d 341 | . . . . . . 7 ⊢ ((𝑋 = ran 𝐻 ∧ 𝑅 ∈ RingOps) → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
| 17 | 12, 16 | syl 17 | . . . . 5 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
| 18 | 11, 17 | mpan 690 | . . . 4 ⊢ (ran (1st ‘𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))) |
| 19 | 10, 18 | mpcom 38 | . . 3 ⊢ (𝑅 ∈ RingOps → ((𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))) |
| 20 | 8, 19 | mpbird 257 | . 2 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))) |
| 21 | 20 | imp 406 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ran crn 5660 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 GIdcgi 30476 ExId cexid 37873 Magmacmagm 37877 MndOpcmndo 37895 RingOpscrngo 37923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-riota 7367 df-ov 7413 df-1st 7993 df-2nd 7994 df-grpo 30479 df-gid 30480 df-ablo 30531 df-ass 37872 df-exid 37874 df-mgmOLD 37878 df-sgrOLD 37890 df-mndo 37896 df-rngo 37924 |
| This theorem is referenced by: rngolidm 37966 rngoridm 37967 |
| Copyright terms: Public domain | W3C validator |