Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidmlem Structured version   Visualization version   GIF version

Theorem rngoidmlem 37943
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1 𝐻 = (2nd𝑅)
uridm.2 𝑋 = ran (1st𝑅)
uridm.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngoidmlem ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))

Proof of Theorem rngoidmlem
StepHypRef Expression
1 uridm.1 . . . . 5 𝐻 = (2nd𝑅)
21rngomndo 37942 . . . 4 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
3 mndomgmid 37878 . . . 4 (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId ))
4 eqid 2737 . . . . . 6 ran 𝐻 = ran 𝐻
5 uridm.3 . . . . . 6 𝑈 = (GId‘𝐻)
64, 5cmpidelt 37866 . . . . 5 ((𝐻 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ ran 𝐻) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
76ex 412 . . . 4 (𝐻 ∈ (Magma ∩ ExId ) → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
82, 3, 73syl 18 . . 3 (𝑅 ∈ RingOps → (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
9 eqid 2737 . . . . 5 (1st𝑅) = (1st𝑅)
101, 9rngorn1eq 37941 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = ran 𝐻)
11 uridm.2 . . . . 5 𝑋 = ran (1st𝑅)
12 eqtr 2760 . . . . . 6 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → 𝑋 = ran 𝐻)
13 simpl 482 . . . . . . . . 9 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → 𝑋 = ran 𝐻)
1413eleq2d 2827 . . . . . . . 8 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → (𝐴𝑋𝐴 ∈ ran 𝐻))
1514imbi1d 341 . . . . . . 7 ((𝑋 = ran 𝐻𝑅 ∈ RingOps) → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
1615ex 412 . . . . . 6 (𝑋 = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1712, 16syl 17 . . . . 5 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran 𝐻) → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1811, 17mpan 690 . . . 4 (ran (1st𝑅) = ran 𝐻 → (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))))
1910, 18mpcom 38 . . 3 (𝑅 ∈ RingOps → ((𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) ↔ (𝐴 ∈ ran 𝐻 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))))
208, 19mpbird 257 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)))
2120imp 406 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3950  ran crn 5686  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  GIdcgi 30509   ExId cexid 37851  Magmacmagm 37855  MndOpcmndo 37873  RingOpscrngo 37901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-riota 7388  df-ov 7434  df-1st 8014  df-2nd 8015  df-grpo 30512  df-gid 30513  df-ablo 30564  df-ass 37850  df-exid 37852  df-mgmOLD 37856  df-sgrOLD 37868  df-mndo 37874  df-rngo 37902
This theorem is referenced by:  rngolidm  37944  rngoridm  37945
  Copyright terms: Public domain W3C validator