MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopick2 Structured version   Visualization version   GIF version

Theorem mopick2 2639
Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1889. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mopick2 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜑𝜒)) → ∃𝑥(𝜑𝜓𝜒))

Proof of Theorem mopick2
StepHypRef Expression
1 nfmo1 2557 . . . 4 𝑥∃*𝑥𝜑
2 nfe1 2147 . . . 4 𝑥𝑥(𝜑𝜓)
31, 2nfan 1902 . . 3 𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓))
4 mopick 2627 . . . . . 6 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
54ancld 551 . . . . 5 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑 → (𝜑𝜓)))
65anim1d 611 . . . 4 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ((𝜑𝜒) → ((𝜑𝜓) ∧ 𝜒)))
7 df-3an 1088 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
86, 7syl6ibr 251 . . 3 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ((𝜑𝜒) → (𝜑𝜓𝜒)))
93, 8eximd 2209 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (∃𝑥(𝜑𝜒) → ∃𝑥(𝜑𝜓𝜒)))
1093impia 1116 1 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜑𝜒)) → ∃𝑥(𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wex 1782  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540
This theorem is referenced by:  moantr  36494
  Copyright terms: Public domain W3C validator