|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mopick2 | Structured version Visualization version GIF version | ||
| Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1886. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| mopick2 | ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfmo1 2557 | . . . 4 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
| 2 | nfe1 2150 | . . . 4 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝜓) | |
| 3 | 1, 2 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) | 
| 4 | mopick 2625 | . . . . . 6 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
| 5 | 4 | ancld 550 | . . . . 5 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → (𝜑 ∧ 𝜓))) | 
| 6 | 5 | anim1d 611 | . . . 4 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒))) | 
| 7 | df-3an 1089 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 8 | 6, 7 | imbitrrdi 252 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜓 ∧ 𝜒))) | 
| 9 | 3, 8 | eximd 2216 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (∃𝑥(𝜑 ∧ 𝜒) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒))) | 
| 10 | 9 | 3impia 1118 | 1 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∃wex 1779 ∃*wmo 2538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 | 
| This theorem is referenced by: moantr 38365 | 
| Copyright terms: Public domain | W3C validator |