MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpov Structured version   Visualization version   GIF version

Theorem mpov 7364
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpov (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpov
StepHypRef Expression
1 df-mpo 7260 . 2 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
2 vex 3426 . . . . 5 𝑥 ∈ V
3 vex 3426 . . . . 5 𝑦 ∈ V
42, 3pm3.2i 470 . . . 4 (𝑥 ∈ V ∧ 𝑦 ∈ V)
54biantrur 530 . . 3 (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶))
65oprabbii 7320 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
71, 6eqtr4i 2769 1 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {coprab 7256  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  1st2val  7832  2nd2val  7833
  Copyright terms: Public domain W3C validator