![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpov | Structured version Visualization version GIF version |
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
Ref | Expression |
---|---|
mpov | ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7021 | . 2 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} | |
2 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 471 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantrur 531 | . . 3 ⊢ (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)) |
6 | 5 | oprabbii 7080 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} |
7 | 1, 6 | eqtr4i 2822 | 1 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 {coprab 7017 ∈ cmpo 7018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-v 3439 df-oprab 7020 df-mpo 7021 |
This theorem is referenced by: 1st2val 7573 2nd2val 7574 |
Copyright terms: Public domain | W3C validator |