 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpov Structured version   Visualization version   GIF version

Theorem mpov 7120
 Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpov (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpov
StepHypRef Expression
1 df-mpo 7021 . 2 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
2 vex 3440 . . . . 5 𝑥 ∈ V
3 vex 3440 . . . . 5 𝑦 ∈ V
42, 3pm3.2i 471 . . . 4 (𝑥 ∈ V ∧ 𝑦 ∈ V)
54biantrur 531 . . 3 (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶))
65oprabbii 7080 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
71, 6eqtr4i 2822 1 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 396   = wceq 1522   ∈ wcel 2081  Vcvv 3437  {coprab 7017   ∈ cmpo 7018 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-12 2141  ax-ext 2769 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-v 3439  df-oprab 7020  df-mpo 7021 This theorem is referenced by:  1st2val  7573  2nd2val  7574
 Copyright terms: Public domain W3C validator