![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpov | Structured version Visualization version GIF version |
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
Ref | Expression |
---|---|
mpov | ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7417 | . 2 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} | |
2 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3477 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantrur 530 | . . 3 ⊢ (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)) |
6 | 5 | oprabbii 7479 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} |
7 | 1, 6 | eqtr4i 2762 | 1 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {coprab 7413 ∈ cmpo 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-oprab 7416 df-mpo 7417 |
This theorem is referenced by: 1st2val 8007 2nd2val 8008 |
Copyright terms: Public domain | W3C validator |