![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprabbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
oprabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
oprabbii | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝑤 = 𝑤 | |
2 | oprabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑤 = 𝑤 → (𝜑 ↔ 𝜓)) |
4 | 3 | oprabbidv 7516 | . 2 ⊢ (𝑤 = 𝑤 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 {coprab 7449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-oprab 7452 |
This theorem is referenced by: oprab4 7536 mpov 7562 dfxp3 8102 tposmpo 8304 addsrpr 11144 mulsrpr 11145 addcnsr 11204 mulcnsr 11205 joinfval2 18444 meetfval2 18458 dfxrn2 38332 |
Copyright terms: Public domain | W3C validator |