![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprabbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
oprabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
oprabbii | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2800 | . 2 ⊢ 𝑤 = 𝑤 | |
2 | oprabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑤 = 𝑤 → (𝜑 ↔ 𝜓)) |
4 | 3 | oprabbidv 6944 | . 2 ⊢ (𝑤 = 𝑤 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 {coprab 6880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-oprab 6883 |
This theorem is referenced by: oprab4 6961 mpt2v 6985 dfxp3 7467 tposmpt2 7628 addsrpr 10185 mulsrpr 10186 addcnsr 10245 mulcnsr 10246 joinfval2 17316 meetfval2 17330 dfxrn2 34631 |
Copyright terms: Public domain | W3C validator |