Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabbii Structured version   Visualization version   GIF version

Theorem oprabbii 7215
 Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1 (𝜑𝜓)
Assertion
Ref Expression
oprabbii {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabbii
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 𝑤 = 𝑤
2 oprabbii.1 . . . 4 (𝜑𝜓)
32a1i 11 . . 3 (𝑤 = 𝑤 → (𝜑𝜓))
43oprabbidv 7214 . 2 (𝑤 = 𝑤 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
51, 4ax-mp 5 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   = wceq 1533  {coprab 7151 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-9 2120  ax-12 2173  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-oprab 7154 This theorem is referenced by:  oprab4  7234  mpov  7258  dfxp3  7753  tposmpo  7923  addsrpr  10491  mulsrpr  10492  addcnsr  10551  mulcnsr  10552  joinfval2  17606  meetfval2  17620  dfxrn2  35622
 Copyright terms: Public domain W3C validator