MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabbii Structured version   Visualization version   GIF version

Theorem oprabbii 6945
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1 (𝜑𝜓)
Assertion
Ref Expression
oprabbii {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabbii
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2800 . 2 𝑤 = 𝑤
2 oprabbii.1 . . . 4 (𝜑𝜓)
32a1i 11 . . 3 (𝑤 = 𝑤 → (𝜑𝜓))
43oprabbidv 6944 . 2 (𝑤 = 𝑤 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
51, 4ax-mp 5 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1653  {coprab 6880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2778
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2787  df-cleq 2793  df-clel 2796  df-oprab 6883
This theorem is referenced by:  oprab4  6961  mpt2v  6985  dfxp3  7467  tposmpt2  7628  addsrpr  10185  mulsrpr  10186  addcnsr  10245  mulcnsr  10246  joinfval2  17316  meetfval2  17330  dfxrn2  34631
  Copyright terms: Public domain W3C validator