MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabbii Structured version   Visualization version   GIF version

Theorem oprabbii 7487
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1 (𝜑𝜓)
Assertion
Ref Expression
oprabbii {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabbii
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 𝑤 = 𝑤
2 oprabbii.1 . . . 4 (𝜑𝜓)
32a1i 11 . . 3 (𝑤 = 𝑤 → (𝜑𝜓))
43oprabbidv 7486 . 2 (𝑤 = 𝑤 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
51, 4ax-mp 5 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  {coprab 7420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-oprab 7423
This theorem is referenced by:  oprab4  7506  mpov  7532  dfxp3  8066  tposmpo  8269  addsrpr  11100  mulsrpr  11101  addcnsr  11160  mulcnsr  11161  joinfval2  18369  meetfval2  18383  dfxrn2  37978
  Copyright terms: Public domain W3C validator