Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprabbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
oprabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
oprabbii | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑤 = 𝑤 | |
2 | oprabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑤 = 𝑤 → (𝜑 ↔ 𝜓)) |
4 | 3 | oprabbidv 7341 | . 2 ⊢ (𝑤 = 𝑤 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 {coprab 7276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-oprab 7279 |
This theorem is referenced by: oprab4 7361 mpov 7386 dfxp3 7901 tposmpo 8079 addsrpr 10831 mulsrpr 10832 addcnsr 10891 mulcnsr 10892 joinfval2 18092 meetfval2 18106 dfxrn2 36506 |
Copyright terms: Public domain | W3C validator |