MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabbii Structured version   Visualization version   GIF version

Theorem oprabbii 7320
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1 (𝜑𝜓)
Assertion
Ref Expression
oprabbii {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabbii
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 𝑤 = 𝑤
2 oprabbii.1 . . . 4 (𝜑𝜓)
32a1i 11 . . 3 (𝑤 = 𝑤 → (𝜑𝜓))
43oprabbidv 7319 . 2 (𝑤 = 𝑤 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
51, 4ax-mp 5 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  {coprab 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-oprab 7259
This theorem is referenced by:  oprab4  7339  mpov  7364  dfxp3  7874  tposmpo  8050  addsrpr  10762  mulsrpr  10763  addcnsr  10822  mulcnsr  10823  joinfval2  18007  meetfval2  18021  dfxrn2  36433
  Copyright terms: Public domain W3C validator