| Metamath
Proof Explorer Theorem List (p. 76 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30927) |
(30928-32450) |
(32451-49315) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eqoprab2bw 7501* | Equivalence of ordered pair abstraction subclass and biconditional. Version of eqoprab2b 7502 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Mario Carneiro, 4-Jan-2017.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.) |
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) | ||
| Theorem | eqoprab2b 7502 | Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 5555. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker eqoprab2bw 7501 when possible. (Contributed by Mario Carneiro, 4-Jan-2017.) (New usage is discouraged.) |
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) | ||
| Theorem | mpoeq123 7503* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝐴 = 𝐷 ∧ ∀𝑥 ∈ 𝐴 (𝐵 = 𝐸 ∧ ∀𝑦 ∈ 𝐵 𝐶 = 𝐹)) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) | ||
| Theorem | mpoeq12 7504* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) | ||
| Theorem | mpoeq123dva 7505* | An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) | ||
| Theorem | mpoeq123dv 7506* | An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) | ||
| Theorem | mpoeq123i 7507 | An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.) |
| ⊢ 𝐴 = 𝐷 & ⊢ 𝐵 = 𝐸 & ⊢ 𝐶 = 𝐹 ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) | ||
| Theorem | mpoeq3dva 7508* | Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) | ||
| Theorem | mpoeq3ia 7509 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | mpoeq3dv 7510* | An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
| ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) | ||
| Theorem | nfmpo1 7511 | Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
| ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | nfmpo2 7512 | Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
| ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | nfmpo 7513* | Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| ⊢ Ⅎ𝑧𝐴 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 ⇒ ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | 0mpo0 7514* | A mapping operation with empty domain is empty. Generalization of mpo0 7516. (Contributed by AV, 27-Jan-2024.) |
| ⊢ ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅) | ||
| Theorem | mpo0v 7515* | A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) (Proof shortened by AV, 27-Jan-2024.) |
| ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ | ||
| Theorem | mpo0 7516 | A mapping operation with empty domain. In this version of mpo0v 7515, the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ | ||
| Theorem | oprab4 7517* | Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} | ||
| Theorem | cbvoprab1 7518* | Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.) |
| ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvoprab2 7519* | Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑤 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑤〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvoprab12 7520* | Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑣𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvoprab12v 7521* | Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) |
| ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvoprab3 7522* | Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.) |
| ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑧𝜓 & ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvoprab3v 7523* | Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvmpox 7524* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 7525 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.) |
| ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑥𝐸 & ⊢ Ⅎ𝑦𝐸 & ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐷) & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐷 ↦ 𝐸) | ||
| Theorem | cbvmpo 7525* | Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
| ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑦𝐷 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | cbvmpov 7526* | Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5251, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) & ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | elimdelov 7527 | Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.) |
| ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) & ⊢ 𝑍 ∈ (𝑋𝐹𝑌) ⇒ ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) | ||
| Theorem | brif1 7528 | Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
| ⊢ (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶)) | ||
| Theorem | ovif 7529 | Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) | ||
| Theorem | ovif2 7530 | Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.) |
| ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) | ||
| Theorem | ovif12 7531 | Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)) | ||
| Theorem | ifov 7532 | Move a conditional outside of an operation. (Contributed by AV, 11-Nov-2019.) |
| ⊢ (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵)) | ||
| Theorem | dmoprab 7533* | The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} | ||
| Theorem | dmoprabss 7534* | The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.) |
| ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) | ||
| Theorem | rnoprab 7535* | The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.) |
| ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} | ||
| Theorem | rnoprab2 7536* | The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.) |
| ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} | ||
| Theorem | reldmoprab 7537* | The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.) |
| ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | ||
| Theorem | oprabss 7538* | Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) × V) | ||
| Theorem | eloprabga 7539* | The law of concretion for operation class abstraction. Compare elopab 5530. (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) Avoid ax-10 2141, ax-11 2157. (Revised by Wolf Lammen, 15-Oct-2024.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | eloprabg 7540* | The law of concretion for operation class abstraction. Compare elopab 5530. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) | ||
| Theorem | ssoprab2i 7541* | Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | mpov 7542* | Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
| ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} | ||
| Theorem | mpomptx 7543* | Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | mpompt 7544* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | mpodifsnif 7545 | A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.) |
| ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | mposnif 7546 | A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.) |
| ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | fconstmpo 7547* | Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.) |
| ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | resoprab 7548* | Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.) |
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} | ||
| Theorem | resoprab2 7549* | Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)}) | ||
| Theorem | resmpo 7550* | Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.) |
| ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) | ||
| Theorem | funoprabg 7551* | "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.) |
| ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | ||
| Theorem | funoprab 7552* | "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.) |
| ⊢ ∃*𝑧𝜑 ⇒ ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | ||
| Theorem | fnoprabg 7553* | Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.) |
| ⊢ (∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑}) | ||
| Theorem | mpofun 7554* | The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.) (Proof shortened by SN, 23-Jul-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ Fun 𝐹 | ||
| Theorem | fnoprab 7555* | Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 → ∃!𝑧𝜓) ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | ffnov 7556* | An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.) |
| ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) | ||
| Theorem | fovcld 7557 | Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Revised by Thierry Arnoux, 17-Feb-2017.) |
| ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | ||
| Theorem | fovcl 7558 | Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
| ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | ||
| Theorem | eqfnov 7559* | Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.) |
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) | ||
| Theorem | eqfnov2 7560* | Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.) |
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) | ||
| Theorem | fnov 7561* | Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) | ||
| Theorem | mpo2eqb 7562* | Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 7560. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷)) | ||
| Theorem | rnmpo 7563* | The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} | ||
| Theorem | reldmmpo 7564* | The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ Rel dom 𝐹 | ||
| Theorem | elrnmpog 7565* | Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶)) | ||
| Theorem | elrnmpo 7566* | Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) | ||
| Theorem | elimampo 7567* | Membership in the image of an operation. (Contributed by SN, 27-Apr-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) | ||
| Theorem | elrnmpores 7568* | Membership in the range of a restricted operation class abstraction. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran (𝐹 ↾ 𝑅) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐷 = 𝐶 ∧ 𝑥𝑅𝑦))) | ||
| Theorem | ralrnmpo 7569* | A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | ||
| Theorem | rexrnmpo 7570* | A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) | ||
| Theorem | ovid 7571* | The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ⇒ ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = 𝑧 ↔ 𝜑)) | ||
| Theorem | ovidig 7572* | The value of an operation class abstraction. Compare ovidi 7573. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ ∃*𝑧𝜑 & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) | ||
| Theorem | ovidi 7573* | The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ⇒ ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧)) | ||
| Theorem | ov 7574* | The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ 𝜃)) | ||
| Theorem | ovigg 7575* | The value of an operation class abstraction. Compared with ovig 7576, the condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ ∃*𝑧𝜑 & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) | ||
| Theorem | ovig 7576* | The value of an operation class abstraction (weak version). (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) | ||
| Theorem | ovmpt4g 7577* | Value of a function given by the maps-to notation. (This is the operation analogue of fvmpt2 7025.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) | ||
| Theorem | ovmpos 7578* | Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝑅 ∈ 𝑉) → (𝐴𝐹𝐵) = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝑅) | ||
| Theorem | ov2gf 7579* | The value of an operation class abstraction. A version of ovmpog 7589 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐺 & ⊢ Ⅎ𝑦𝑆 & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) & ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpodxf 7580* | Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐿) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑆 & ⊢ Ⅎ𝑦𝑆 ⇒ ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpodx 7581* | Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐿) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpod 7582* | Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpox 7583* | The value of an operation class abstraction. Variant of ovmpoga 7584 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝐷 = 𝐿) & ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpoga 7584* | Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpoa 7585* | Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) & ⊢ 𝑆 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpodf 7586* | Alternate deduction version of ovmpo 7590, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓)) & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝐹 & ⊢ Ⅎ𝑦𝜓 ⇒ ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) | ||
| Theorem | ovmpodv 7587* | Alternate deduction version of ovmpo 7590, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓)) ⇒ ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) | ||
| Theorem | ovmpodv2 7588* | Alternate deduction version of ovmpo 7590, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) | ||
| Theorem | ovmpog 7589* | Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) & ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpo 7590* | Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) & ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) & ⊢ 𝑆 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpot 7591* | The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) | ||
| Theorem | fvmpopr2d 7592* | Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ (𝜑 → 𝐹 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)) & ⊢ (𝜑 → 𝑃 = 〈𝑎, 𝑏〉) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑃) = 𝐶) | ||
| Theorem | ov3 7593* | The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 ∈ V & ⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑅 = 𝑆) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑆) | ||
| Theorem | ov6g 7594* | The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
| ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑅 = 𝑆) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)} ⇒ ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovg 7595* | The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝜏 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) → ∃!𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ⇒ ⊢ ((𝜏 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷)) → ((𝐴𝐹𝐵) = 𝐶 ↔ 𝜃)) | ||
| Theorem | ovres 7596 | The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) | ||
| Theorem | ovresd 7597 | Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | ||
| Theorem | oprres 7598* | The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) & ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) ⇒ ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
| Theorem | oprssov 7599 | The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.) |
| ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | fovcdm 7600 | An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |