MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd2val Structured version   Visualization version   GIF version

Theorem 2nd2val 7960
Description: Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
2nd2val ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem 2nd2val
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5698 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩)
2 fveq2 6826 . . . . . 6 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩))
3 df-ov 7356 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩)
4 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑤𝑦 = 𝑣) → 𝑦 = 𝑣)
5 mpov 7465 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑦) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}
65eqcomi 2738 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑦)
7 vex 3442 . . . . . . . . 9 𝑣 ∈ V
84, 6, 7ovmpoa 7508 . . . . . . . 8 ((𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = 𝑣)
98el2v 3445 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = 𝑣
103, 9eqtr3i 2754 . . . . . 6 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩) = 𝑣
112, 10eqtrdi 2780 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = 𝑣)
12 vex 3442 . . . . . 6 𝑤 ∈ V
1312, 7op2ndd 7942 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → (2nd𝐴) = 𝑣)
1411, 13eqtr4d 2767 . . . 4 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
1514exlimivv 1932 . . 3 (∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
161, 15sylbi 217 . 2 (𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
17 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3442 . . . . . . . . . 10 𝑦 ∈ V
1917, 18pm3.2i 470 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑦 ∈ V)
20 ax6ev 1969 . . . . . . . . 9 𝑧 𝑧 = 𝑦
2119, 202th 264 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) ↔ ∃𝑧 𝑧 = 𝑦)
2221opabbii 5162 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑦}
23 df-xp 5629 . . . . . . 7 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
24 dmoprab 7456 . . . . . . 7 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑦}
2522, 23, 243eqtr4ri 2763 . . . . . 6 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (V × V)
2625eleq2i 2820 . . . . 5 (𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↔ 𝐴 ∈ (V × V))
27 ndmfv 6859 . . . . 5 𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ∅)
2826, 27sylnbir 331 . . . 4 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ∅)
29 rnsnn0 6161 . . . . . . . 8 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
3029biimpri 228 . . . . . . 7 (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
3130necon1bi 2953 . . . . . 6 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
3231unieqd 4874 . . . . 5 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
33 uni0 4889 . . . . 5 ∅ = ∅
3432, 33eqtrdi 2780 . . . 4 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
3528, 34eqtr4d 2767 . . 3 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ran {𝐴})
36 2ndval 7934 . . 3 (2nd𝐴) = ran {𝐴}
3735, 36eqtr4di 2782 . 2 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
3816, 37pm2.61i 182 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  c0 4286  {csn 4579  cop 4585   cuni 4861  {copab 5157   × cxp 5621  dom cdm 5623  ran crn 5624  cfv 6486  (class class class)co 7353  {coprab 7354  cmpo 7355  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-2nd 7932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator