MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd2val Structured version   Visualization version   GIF version

Theorem 2nd2val 7704
Description: Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
2nd2val ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem 2nd2val
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5594 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩)
2 fveq2 6649 . . . . . 6 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩))
3 df-ov 7142 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩)
4 simpr 488 . . . . . . . . 9 ((𝑥 = 𝑤𝑦 = 𝑣) → 𝑦 = 𝑣)
5 mpov 7247 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑦) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}
65eqcomi 2810 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑦)
7 vex 3447 . . . . . . . . 9 𝑣 ∈ V
84, 6, 7ovmpoa 7288 . . . . . . . 8 ((𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = 𝑣)
98el2v 3451 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = 𝑣
103, 9eqtr3i 2826 . . . . . 6 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩) = 𝑣
112, 10eqtrdi 2852 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = 𝑣)
12 vex 3447 . . . . . 6 𝑤 ∈ V
1312, 7op2ndd 7686 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → (2nd𝐴) = 𝑣)
1411, 13eqtr4d 2839 . . . 4 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
1514exlimivv 1933 . . 3 (∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
161, 15sylbi 220 . 2 (𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
17 vex 3447 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3447 . . . . . . . . . 10 𝑦 ∈ V
1917, 18pm3.2i 474 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑦 ∈ V)
20 ax6ev 1972 . . . . . . . . 9 𝑧 𝑧 = 𝑦
2119, 202th 267 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) ↔ ∃𝑧 𝑧 = 𝑦)
2221opabbii 5100 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑦}
23 df-xp 5529 . . . . . . 7 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
24 dmoprab 7238 . . . . . . 7 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑦}
2522, 23, 243eqtr4ri 2835 . . . . . 6 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (V × V)
2625eleq2i 2884 . . . . 5 (𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↔ 𝐴 ∈ (V × V))
27 ndmfv 6679 . . . . 5 𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ∅)
2826, 27sylnbir 334 . . . 4 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ∅)
29 rnsnn0 6036 . . . . . . . 8 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
3029biimpri 231 . . . . . . 7 (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
3130necon1bi 3018 . . . . . 6 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
3231unieqd 4817 . . . . 5 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
33 uni0 4831 . . . . 5 ∅ = ∅
3432, 33eqtrdi 2852 . . . 4 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
3528, 34eqtr4d 2839 . . 3 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ran {𝐴})
36 2ndval 7678 . . 3 (2nd𝐴) = ran {𝐴}
3735, 36eqtr4di 2854 . 2 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
3816, 37pm2.61i 185 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538  wex 1781  wcel 2112  wne 2990  Vcvv 3444  c0 4246  {csn 4528  cop 4534   cuni 4803  {copab 5095   × cxp 5521  dom cdm 5523  ran crn 5524  cfv 6328  (class class class)co 7139  {coprab 7140  cmpo 7141  2nd c2nd 7674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-2nd 7676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator