MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2val Structured version   Visualization version   GIF version

Theorem 1st2val 7859
Description: Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
1st2val ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem 1st2val
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5661 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩)
2 fveq2 6774 . . . . . 6 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩))
3 df-ov 7278 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩)
4 simpl 483 . . . . . . . . 9 ((𝑥 = 𝑤𝑦 = 𝑣) → 𝑥 = 𝑤)
5 mpov 7386 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}
65eqcomi 2747 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥)
7 vex 3436 . . . . . . . . 9 𝑤 ∈ V
84, 6, 7ovmpoa 7428 . . . . . . . 8 ((𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = 𝑤)
98el2v 3440 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = 𝑤
103, 9eqtr3i 2768 . . . . . 6 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩) = 𝑤
112, 10eqtrdi 2794 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = 𝑤)
12 vex 3436 . . . . . 6 𝑣 ∈ V
137, 12op1std 7841 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → (1st𝐴) = 𝑤)
1411, 13eqtr4d 2781 . . . 4 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
1514exlimivv 1935 . . 3 (∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
161, 15sylbi 216 . 2 (𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
17 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3436 . . . . . . . . . 10 𝑦 ∈ V
1917, 18pm3.2i 471 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑦 ∈ V)
20 ax6ev 1973 . . . . . . . . 9 𝑧 𝑧 = 𝑥
2119, 202th 263 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) ↔ ∃𝑧 𝑧 = 𝑥)
2221opabbii 5141 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑥}
23 df-xp 5595 . . . . . . 7 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
24 dmoprab 7376 . . . . . . 7 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑥}
2522, 23, 243eqtr4ri 2777 . . . . . 6 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (V × V)
2625eleq2i 2830 . . . . 5 (𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↔ 𝐴 ∈ (V × V))
27 ndmfv 6804 . . . . 5 𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ∅)
2826, 27sylnbir 331 . . . 4 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ∅)
29 dmsnn0 6110 . . . . . . . 8 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
3029biimpri 227 . . . . . . 7 (dom {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
3130necon1bi 2972 . . . . . 6 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
3231unieqd 4853 . . . . 5 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
33 uni0 4869 . . . . 5 ∅ = ∅
3432, 33eqtrdi 2794 . . . 4 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
3528, 34eqtr4d 2781 . . 3 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = dom {𝐴})
36 1stval 7833 . . 3 (1st𝐴) = dom {𝐴}
3735, 36eqtr4di 2796 . 2 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
3816, 37pm2.61i 182 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  c0 4256  {csn 4561  cop 4567   cuni 4839  {copab 5136   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275  {coprab 7276  cmpo 7277  1st c1st 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator