Step | Hyp | Ref
| Expression |
1 | | elvv 5661 |
. . 3
⊢ (𝐴 ∈ (V × V) ↔
∃𝑤∃𝑣 𝐴 = 〈𝑤, 𝑣〉) |
2 | | fveq2 6774 |
. . . . . 6
⊢ (𝐴 = 〈𝑤, 𝑣〉 → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘〈𝑤, 𝑣〉)) |
3 | | df-ov 7278 |
. . . . . . 7
⊢ (𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}𝑣) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘〈𝑤, 𝑣〉) |
4 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → 𝑥 = 𝑤) |
5 | | mpov 7386 |
. . . . . . . . . 10
⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} |
6 | 5 | eqcomi 2747 |
. . . . . . . . 9
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥) |
7 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
8 | 4, 6, 7 | ovmpoa 7428 |
. . . . . . . 8
⊢ ((𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}𝑣) = 𝑤) |
9 | 8 | el2v 3440 |
. . . . . . 7
⊢ (𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}𝑣) = 𝑤 |
10 | 3, 9 | eqtr3i 2768 |
. . . . . 6
⊢
({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘〈𝑤, 𝑣〉) = 𝑤 |
11 | 2, 10 | eqtrdi 2794 |
. . . . 5
⊢ (𝐴 = 〈𝑤, 𝑣〉 → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = 𝑤) |
12 | | vex 3436 |
. . . . . 6
⊢ 𝑣 ∈ V |
13 | 7, 12 | op1std 7841 |
. . . . 5
⊢ (𝐴 = 〈𝑤, 𝑣〉 → (1st ‘𝐴) = 𝑤) |
14 | 11, 13 | eqtr4d 2781 |
. . . 4
⊢ (𝐴 = 〈𝑤, 𝑣〉 → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴)) |
15 | 14 | exlimivv 1935 |
. . 3
⊢
(∃𝑤∃𝑣 𝐴 = 〈𝑤, 𝑣〉 → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴)) |
16 | 1, 15 | sylbi 216 |
. 2
⊢ (𝐴 ∈ (V × V) →
({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴)) |
17 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
18 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
19 | 17, 18 | pm3.2i 471 |
. . . . . . . . 9
⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
20 | | ax6ev 1973 |
. . . . . . . . 9
⊢
∃𝑧 𝑧 = 𝑥 |
21 | 19, 20 | 2th 263 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ↔ ∃𝑧 𝑧 = 𝑥) |
22 | 21 | opabbii 5141 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 𝑧 = 𝑥} |
23 | | df-xp 5595 |
. . . . . . 7
⊢ (V
× V) = {〈𝑥,
𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
24 | | dmoprab 7376 |
. . . . . . 7
⊢ dom
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 𝑧 = 𝑥} |
25 | 22, 23, 24 | 3eqtr4ri 2777 |
. . . . . 6
⊢ dom
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (V × V) |
26 | 25 | eleq2i 2830 |
. . . . 5
⊢ (𝐴 ∈ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} ↔ 𝐴 ∈ (V × V)) |
27 | | ndmfv 6804 |
. . . . 5
⊢ (¬
𝐴 ∈ dom
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = ∅) |
28 | 26, 27 | sylnbir 331 |
. . . 4
⊢ (¬
𝐴 ∈ (V × V)
→ ({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = ∅) |
29 | | dmsnn0 6110 |
. . . . . . . 8
⊢ (𝐴 ∈ (V × V) ↔ dom
{𝐴} ≠
∅) |
30 | 29 | biimpri 227 |
. . . . . . 7
⊢ (dom
{𝐴} ≠ ∅ →
𝐴 ∈ (V ×
V)) |
31 | 30 | necon1bi 2972 |
. . . . . 6
⊢ (¬
𝐴 ∈ (V × V)
→ dom {𝐴} =
∅) |
32 | 31 | unieqd 4853 |
. . . . 5
⊢ (¬
𝐴 ∈ (V × V)
→ ∪ dom {𝐴} = ∪
∅) |
33 | | uni0 4869 |
. . . . 5
⊢ ∪ ∅ = ∅ |
34 | 32, 33 | eqtrdi 2794 |
. . . 4
⊢ (¬
𝐴 ∈ (V × V)
→ ∪ dom {𝐴} = ∅) |
35 | 28, 34 | eqtr4d 2781 |
. . 3
⊢ (¬
𝐴 ∈ (V × V)
→ ({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = ∪ dom {𝐴}) |
36 | | 1stval 7833 |
. . 3
⊢
(1st ‘𝐴) = ∪ dom {𝐴} |
37 | 35, 36 | eqtr4di 2796 |
. 2
⊢ (¬
𝐴 ∈ (V × V)
→ ({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴)) |
38 | 16, 37 | pm2.61i 182 |
1
⊢
({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴) |