![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssoprab2i | Structured version Visualization version GIF version |
Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ssoprab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssoprab2i | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssoprab2i.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
2 | 1 | anim2i 616 | . . . 4 ⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) → (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
3 | 2 | 2eximi 1834 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
4 | 3 | ssopab2i 5569 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)} |
5 | dfoprab2 7508 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
6 | dfoprab2 7508 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
7 | 4, 5, 6 | 3sstr4i 4052 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ⊆ wss 3976 〈cop 4654 {copab 5228 {coprab 7449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-oprab 7452 |
This theorem is referenced by: mpoaddf 11278 mpomulf 11279 sxbrsigalem5 34253 |
Copyright terms: Public domain | W3C validator |