Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq12dfOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mpteq12df 5156 as of 11-Nov-2024. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mpteq12df.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq12df.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12df.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12dfOLD | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12df.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | mpteq12df.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐶) | |
4 | 3 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
5 | mpteq12df.3 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐷) | |
6 | 5 | eqeq2d 2749 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
7 | 4, 6 | anbi12d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
8 | 1, 2, 7 | opabbid 5135 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
9 | df-mpt 5154 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
10 | df-mpt 5154 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
11 | 8, 9, 10 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 {copab 5132 ↦ cmpt 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-mpt 5154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |