MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbid Structured version   Visualization version   GIF version

Theorem opabbid 5123
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Hypotheses
Ref Expression
opabbid.1 𝑥𝜑
opabbid.2 𝑦𝜑
opabbid.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
opabbid (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})

Proof of Theorem opabbid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opabbid.1 . . . 4 𝑥𝜑
2 opabbid.2 . . . . 5 𝑦𝜑
3 opabbid.3 . . . . . 6 (𝜑 → (𝜓𝜒))
43anbi2d 632 . . . . 5 (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)))
52, 4exbid 2221 . . . 4 (𝜑 → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)))
61, 5exbid 2221 . . 3 (𝜑 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)))
76abbidv 2807 . 2 (𝜑 → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)})
8 df-opab 5121 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
9 df-opab 5121 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜒} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)}
107, 8, 93eqtr4g 2803 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wnf 1791  {cab 2714  cop 4552  {copab 5120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-9 2120  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-opab 5121
This theorem is referenced by:  mpteq12df  5142  mpteq12f  5143  feqmptdf  6787  fnoprabg  7338  sprsymrelfo  44630
  Copyright terms: Public domain W3C validator