MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbid Structured version   Visualization version   GIF version

Theorem opabbid 5213
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Hypotheses
Ref Expression
opabbid.1 𝑥𝜑
opabbid.2 𝑦𝜑
opabbid.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
opabbid (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})

Proof of Theorem opabbid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opabbid.1 . . . 4 𝑥𝜑
2 opabbid.2 . . . . 5 𝑦𝜑
3 opabbid.3 . . . . . 6 (𝜑 → (𝜓𝜒))
43anbi2d 628 . . . . 5 (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)))
52, 4exbid 2215 . . . 4 (𝜑 → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)))
61, 5exbid 2215 . . 3 (𝜑 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)))
76abbidv 2800 . 2 (𝜑 → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)})
8 df-opab 5211 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
9 df-opab 5211 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜒} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)}
107, 8, 93eqtr4g 2796 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wnf 1784  {cab 2708  cop 4634  {copab 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-opab 5211
This theorem is referenced by:  mpteq12da  5233  mpteq12dfOLD  5235  mpteq12f  5236  feqmptdf  6962  fnoprabg  7534  sprsymrelfo  46627
  Copyright terms: Public domain W3C validator