MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f0rn Structured version   Visualization version   GIF version

Theorem i1f0rn 25605
Description: Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
i1f0rn (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)

Proof of Theorem i1f0rn
StepHypRef Expression
1 pnfnre 11148 . . 3 +∞ ∉ ℝ
21neli 3034 . 2 ¬ +∞ ∈ ℝ
3 rembl 25463 . . . . . 6 ℝ ∈ dom vol
4 mblvol 25453 . . . . . 6 (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ))
53, 4ax-mp 5 . . . . 5 (vol‘ℝ) = (vol*‘ℝ)
6 ovolre 25448 . . . . 5 (vol*‘ℝ) = +∞
75, 6eqtri 2754 . . . 4 (vol‘ℝ) = +∞
8 cnvimarndm 6027 . . . . . . 7 (𝐹 “ ran 𝐹) = dom 𝐹
9 i1ff 25599 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
109fdmd 6656 . . . . . . . 8 (𝐹 ∈ dom ∫1 → dom 𝐹 = ℝ)
1110adantr 480 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → dom 𝐹 = ℝ)
128, 11eqtrid 2778 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (𝐹 “ ran 𝐹) = ℝ)
1312fveq2d 6821 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(𝐹 “ ran 𝐹)) = (vol‘ℝ))
14 i1fima2 25602 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(𝐹 “ ran 𝐹)) ∈ ℝ)
1513, 14eqeltrrd 2832 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘ℝ) ∈ ℝ)
167, 15eqeltrrid 2836 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → +∞ ∈ ℝ)
1716ex 412 . 2 (𝐹 ∈ dom ∫1 → (¬ 0 ∈ ran 𝐹 → +∞ ∈ ℝ))
182, 17mt3i 149 1 (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  ccnv 5610  dom cdm 5611  ran crn 5612  cima 5614  cfv 6476  cr 11000  0cc0 11001  +∞cpnf 11138  vol*covol 25385  volcvol 25386  1citg1 25538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-rest 17321  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-bases 22856  df-cmp 23297  df-ovol 25387  df-vol 25388  df-mbf 25542  df-itg1 25543
This theorem is referenced by:  i1fres  25628  itg1climres  25637  itg2addnclem2  37712  ftc1anclem7  37739  ftc1anc  37741
  Copyright terms: Public domain W3C validator