Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1f0rn | Structured version Visualization version GIF version |
Description: Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f0rn | ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11016 | . . 3 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3051 | . 2 ⊢ ¬ +∞ ∈ ℝ |
3 | rembl 24704 | . . . . . 6 ⊢ ℝ ∈ dom vol | |
4 | mblvol 24694 | . . . . . 6 ⊢ (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (vol‘ℝ) = (vol*‘ℝ) |
6 | ovolre 24689 | . . . . 5 ⊢ (vol*‘ℝ) = +∞ | |
7 | 5, 6 | eqtri 2766 | . . . 4 ⊢ (vol‘ℝ) = +∞ |
8 | cnvimarndm 5990 | . . . . . . 7 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
9 | i1ff 24840 | . . . . . . . . 9 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
10 | 9 | fdmd 6611 | . . . . . . . 8 ⊢ (𝐹 ∈ dom ∫1 → dom 𝐹 = ℝ) |
11 | 10 | adantr 481 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → dom 𝐹 = ℝ) |
12 | 8, 11 | eqtrid 2790 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (◡𝐹 “ ran 𝐹) = ℝ) |
13 | 12 | fveq2d 6778 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(◡𝐹 “ ran 𝐹)) = (vol‘ℝ)) |
14 | i1fima2 24843 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(◡𝐹 “ ran 𝐹)) ∈ ℝ) | |
15 | 13, 14 | eqeltrrd 2840 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘ℝ) ∈ ℝ) |
16 | 7, 15 | eqeltrrid 2844 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → +∞ ∈ ℝ) |
17 | 16 | ex 413 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (¬ 0 ∈ ran 𝐹 → +∞ ∈ ℝ)) |
18 | 2, 17 | mt3i 149 | 1 ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ◡ccnv 5588 dom cdm 5589 ran crn 5590 “ cima 5592 ‘cfv 6433 ℝcr 10870 0cc0 10871 +∞cpnf 11006 vol*covol 24626 volcvol 24627 ∫1citg1 24779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 df-vol 24629 df-mbf 24783 df-itg1 24784 |
This theorem is referenced by: i1fres 24870 itg1climres 24879 itg2addnclem2 35829 ftc1anclem7 35856 ftc1anc 35858 |
Copyright terms: Public domain | W3C validator |