| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1f0rn | Structured version Visualization version GIF version | ||
| Description: Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1f0rn | ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11148 | . . 3 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3034 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 3 | rembl 25463 | . . . . . 6 ⊢ ℝ ∈ dom vol | |
| 4 | mblvol 25453 | . . . . . 6 ⊢ (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (vol‘ℝ) = (vol*‘ℝ) |
| 6 | ovolre 25448 | . . . . 5 ⊢ (vol*‘ℝ) = +∞ | |
| 7 | 5, 6 | eqtri 2754 | . . . 4 ⊢ (vol‘ℝ) = +∞ |
| 8 | cnvimarndm 6027 | . . . . . . 7 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
| 9 | i1ff 25599 | . . . . . . . . 9 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 10 | 9 | fdmd 6656 | . . . . . . . 8 ⊢ (𝐹 ∈ dom ∫1 → dom 𝐹 = ℝ) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → dom 𝐹 = ℝ) |
| 12 | 8, 11 | eqtrid 2778 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (◡𝐹 “ ran 𝐹) = ℝ) |
| 13 | 12 | fveq2d 6821 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(◡𝐹 “ ran 𝐹)) = (vol‘ℝ)) |
| 14 | i1fima2 25602 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(◡𝐹 “ ran 𝐹)) ∈ ℝ) | |
| 15 | 13, 14 | eqeltrrd 2832 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘ℝ) ∈ ℝ) |
| 16 | 7, 15 | eqeltrrid 2836 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → +∞ ∈ ℝ) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (¬ 0 ∈ ran 𝐹 → +∞ ∈ ℝ)) |
| 18 | 2, 17 | mt3i 149 | 1 ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ◡ccnv 5610 dom cdm 5611 ran crn 5612 “ cima 5614 ‘cfv 6476 ℝcr 11000 0cc0 11001 +∞cpnf 11138 vol*covol 25385 volcvol 25386 ∫1citg1 25538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 df-rest 17321 df-topgen 17342 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-top 22804 df-topon 22821 df-bases 22856 df-cmp 23297 df-ovol 25387 df-vol 25388 df-mbf 25542 df-itg1 25543 |
| This theorem is referenced by: i1fres 25628 itg1climres 25637 itg2addnclem2 37712 ftc1anclem7 37739 ftc1anc 37741 |
| Copyright terms: Public domain | W3C validator |