![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1f0rn | Structured version Visualization version GIF version |
Description: Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f0rn | ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 10370 | . . 3 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3076 | . 2 ⊢ ¬ +∞ ∈ ℝ |
3 | rembl 23648 | . . . . . 6 ⊢ ℝ ∈ dom vol | |
4 | mblvol 23638 | . . . . . 6 ⊢ (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (vol‘ℝ) = (vol*‘ℝ) |
6 | ovolre 23633 | . . . . 5 ⊢ (vol*‘ℝ) = +∞ | |
7 | 5, 6 | eqtri 2821 | . . . 4 ⊢ (vol‘ℝ) = +∞ |
8 | cnvimarndm 5703 | . . . . . . 7 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
9 | i1ff 23784 | . . . . . . . . 9 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
10 | 9 | fdmd 6265 | . . . . . . . 8 ⊢ (𝐹 ∈ dom ∫1 → dom 𝐹 = ℝ) |
11 | 10 | adantr 473 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → dom 𝐹 = ℝ) |
12 | 8, 11 | syl5eq 2845 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (◡𝐹 “ ran 𝐹) = ℝ) |
13 | 12 | fveq2d 6415 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(◡𝐹 “ ran 𝐹)) = (vol‘ℝ)) |
14 | i1fima2 23787 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘(◡𝐹 “ ran 𝐹)) ∈ ℝ) | |
15 | 13, 14 | eqeltrrd 2879 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → (vol‘ℝ) ∈ ℝ) |
16 | 7, 15 | syl5eqelr 2883 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹) → +∞ ∈ ℝ) |
17 | 16 | ex 402 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (¬ 0 ∈ ran 𝐹 → +∞ ∈ ℝ)) |
18 | 2, 17 | mt3i 144 | 1 ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ◡ccnv 5311 dom cdm 5312 ran crn 5313 “ cima 5315 ‘cfv 6101 ℝcr 10223 0cc0 10224 +∞cpnf 10360 vol*covol 23570 volcvol 23571 ∫1citg1 23723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-sum 14758 df-rest 16398 df-topgen 16419 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-top 21027 df-topon 21044 df-bases 21079 df-cmp 21519 df-ovol 23572 df-vol 23573 df-mbf 23727 df-itg1 23728 |
This theorem is referenced by: i1fres 23813 itg1climres 23822 itg2addnclem2 33950 ftc1anclem7 33979 ftc1anc 33981 |
Copyright terms: Public domain | W3C validator |