| Step | Hyp | Ref
| Expression |
| 1 | | untelirr 35730 |
. . . . 5
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
| 2 | | eluni2 4892 |
. . . . . 6
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}𝑧 ∈ 𝑥) |
| 3 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 4 | | sseq1 3989 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
| 5 | | treq 5242 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (Tr 𝑤 ↔ Tr 𝑥)) |
| 6 | | raleq 3306 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡)) |
| 7 | 4, 5, 6 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡))) |
| 8 | 3, 7 | elab 3663 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡)) |
| 9 | | elequ1 2116 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡)) |
| 10 | | elequ2 2124 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
| 11 | 9, 10 | bitrd 279 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
| 12 | 11 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧)) |
| 13 | 12 | cbvralvw 3224 |
. . . . . . . . . . 11
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 14 | 13 | biimpi 216 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 15 | 14 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 16 | 8, 15 | sylbi 217 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 17 | | rsp 3234 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 ¬ 𝑧 ∈ 𝑧 → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧)) |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧)) |
| 19 | 18 | rexlimiv 3135 |
. . . . . 6
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧) |
| 20 | 2, 19 | sylbi 217 |
. . . . 5
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ¬ 𝑧 ∈ 𝑧) |
| 21 | 1, 20 | mprg 3058 |
. . . 4
⊢ ¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
| 22 | | dfon2lem2 35807 |
. . . . 5
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 |
| 23 | | dfpss2 4068 |
. . . . . 6
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴)) |
| 24 | | dfon2lem1 35806 |
. . . . . . 7
⊢ Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
| 25 | | ssexg 5298 |
. . . . . . . . . 10
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V) |
| 26 | 22, 25 | mpan 690 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V) |
| 27 | | psseq1 4070 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑥 ⊊ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴)) |
| 28 | | treq 5242 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (Tr 𝑥 ↔ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 29 | 27, 28 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}))) |
| 30 | | eleq1 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑥 ∈ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴)) |
| 31 | 29, 30 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ↔ ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴))) |
| 32 | 31 | spcgv 3580 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴))) |
| 33 | 32 | imp 406 |
. . . . . . . . 9
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴)) |
| 34 | 26, 33 | sylan 580 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴)) |
| 35 | | snssi 4789 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}} ⊆ 𝐴) |
| 36 | | unss 4170 |
. . . . . . . . . . 11
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}} ⊆ 𝐴) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∪ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}}) ⊆ 𝐴) |
| 37 | | df-suc 6363 |
. . . . . . . . . . . 12
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∪ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}}) |
| 38 | 37 | sseq1i 3992 |
. . . . . . . . . . 11
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∪ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}}) ⊆ 𝐴) |
| 39 | 36, 38 | sylbb2 238 |
. . . . . . . . . 10
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}} ⊆ 𝐴) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴) |
| 40 | 22, 35, 39 | sylancr 587 |
. . . . . . . . 9
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴) |
| 41 | | suctr 6445 |
. . . . . . . . . . . . 13
⊢ (Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
| 42 | 24, 41 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Tr suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
| 43 | | untuni 35731 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 ↔ ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 44 | 43, 16 | mprgbir 3059 |
. . . . . . . . . . . . 13
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 |
| 45 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑤 ⊆ 𝐴 |
| 46 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡Tr 𝑤 |
| 47 | | nfra1 3270 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 |
| 48 | 45, 46, 47 | nf3an 1901 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡) |
| 49 | 48 | nfab 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
| 50 | 49 | nfuni 4895 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
| 51 | 50 | untsucf 35732 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 → ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡) |
| 52 | 44, 51 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
∀𝑡 ∈ suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡 |
| 53 | | sseq1 3989 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑧 ⊆ 𝐴 ↔ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴)) |
| 54 | | treq 5242 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (Tr 𝑧 ↔ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 55 | | nfcv 2899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝑧 |
| 56 | 50 | nfsuc 6431 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
| 57 | 55, 56 | raleqf 3339 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡)) |
| 58 | 53, 54, 57 | 3anbi123d 1438 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ((𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡) ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡))) |
| 59 | | sseq1 3989 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
| 60 | | treq 5242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (Tr 𝑤 ↔ Tr 𝑧)) |
| 61 | | raleq 3306 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡)) |
| 62 | 59, 60, 61 | 3anbi123d 1438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡) ↔ (𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡))) |
| 63 | 62 | cbvabv 2806 |
. . . . . . . . . . . . . . 15
⊢ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = {𝑧 ∣ (𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡)} |
| 64 | 58, 63 | elab2g 3664 |
. . . . . . . . . . . . . 14
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V → (suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡))) |
| 65 | 64 | biimprd 248 |
. . . . . . . . . . . . 13
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V → ((suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 66 | | sucexg 7804 |
. . . . . . . . . . . . 13
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V) |
| 67 | 65, 66 | syl11 33 |
. . . . . . . . . . . 12
⊢ ((suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡) → (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 68 | 42, 52, 67 | mp3an23 1455 |
. . . . . . . . . . 11
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 → (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 69 | 68 | com12 32 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 70 | | elssuni 4918 |
. . . . . . . . . . 11
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
| 71 | | sucssel 6454 |
. . . . . . . . . . 11
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 72 | 70, 71 | syl5 34 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 73 | 69, 72 | syld 47 |
. . . . . . . . 9
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 74 | 40, 73 | mpd 15 |
. . . . . . . 8
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
| 75 | 34, 74 | syl6 35 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 76 | 24, 75 | mpan2i 697 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 77 | 23, 76 | biimtrrid 243 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 78 | 22, 77 | mpani 696 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → (¬ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
| 79 | 21, 78 | mt3i 149 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴) |
| 80 | 24, 44 | pm3.2i 470 |
. . . 4
⊢ (Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧) |
| 81 | | treq 5242 |
. . . . 5
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → (Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ Tr 𝐴)) |
| 82 | | raleq 3306 |
. . . . 5
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → (∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧)) |
| 83 | 81, 82 | anbi12d 632 |
. . . 4
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → ((Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧) ↔ (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) |
| 84 | 80, 83 | mpbii 233 |
. . 3
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧)) |
| 85 | 79, 84 | syl 17 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧)) |
| 86 | 85 | ex 412 |
1
⊢ (𝐴 ∈ 𝑉 → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) |