Step | Hyp | Ref
| Expression |
1 | | untelirr 33649 |
. . . . 5
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
2 | | eluni2 4843 |
. . . . . 6
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}𝑧 ∈ 𝑥) |
3 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
4 | | sseq1 3946 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
5 | | treq 5197 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (Tr 𝑤 ↔ Tr 𝑥)) |
6 | | raleq 3342 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡)) |
7 | 4, 5, 6 | 3anbi123d 1435 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡))) |
8 | 3, 7 | elab 3609 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡)) |
9 | | elequ1 2113 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡)) |
10 | | elequ2 2121 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
11 | 9, 10 | bitrd 278 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
12 | 11 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧)) |
13 | 12 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
14 | 13 | biimpi 215 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
15 | 14 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
16 | 8, 15 | sylbi 216 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
17 | | rsp 3131 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 ¬ 𝑧 ∈ 𝑧 → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧)) |
18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧)) |
19 | 18 | rexlimiv 3209 |
. . . . . 6
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧) |
20 | 2, 19 | sylbi 216 |
. . . . 5
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ¬ 𝑧 ∈ 𝑧) |
21 | 1, 20 | mprg 3078 |
. . . 4
⊢ ¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
22 | | dfon2lem2 33760 |
. . . . 5
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 |
23 | | dfpss2 4020 |
. . . . . 6
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴)) |
24 | | dfon2lem1 33759 |
. . . . . . 7
⊢ Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
25 | | ssexg 5247 |
. . . . . . . . . 10
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V) |
26 | 22, 25 | mpan 687 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V) |
27 | | psseq1 4022 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑥 ⊊ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴)) |
28 | | treq 5197 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (Tr 𝑥 ↔ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
29 | 27, 28 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}))) |
30 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑥 ∈ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴)) |
31 | 29, 30 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ↔ ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴))) |
32 | 31 | spcgv 3535 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴))) |
33 | 32 | imp 407 |
. . . . . . . . 9
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴)) |
34 | 26, 33 | sylan 580 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴)) |
35 | | snssi 4741 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}} ⊆ 𝐴) |
36 | | unss 4118 |
. . . . . . . . . . 11
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}} ⊆ 𝐴) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∪ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}}) ⊆ 𝐴) |
37 | | df-suc 6272 |
. . . . . . . . . . . 12
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∪ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}}) |
38 | 37 | sseq1i 3949 |
. . . . . . . . . . 11
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∪ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}}) ⊆ 𝐴) |
39 | 36, 38 | sylbb2 237 |
. . . . . . . . . 10
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}} ⊆ 𝐴) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴) |
40 | 22, 35, 39 | sylancr 587 |
. . . . . . . . 9
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴) |
41 | | suctr 6349 |
. . . . . . . . . . . . 13
⊢ (Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
42 | 24, 41 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Tr suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
43 | | untuni 33650 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 ↔ ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
44 | 43, 16 | mprgbir 3079 |
. . . . . . . . . . . . 13
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 |
45 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑤 ⊆ 𝐴 |
46 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡Tr 𝑤 |
47 | | nfra1 3144 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 |
48 | 45, 46, 47 | nf3an 1904 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡) |
49 | 48 | nfab 2913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
50 | 49 | nfuni 4846 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
51 | 50 | untsucf 33651 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 → ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡) |
52 | 44, 51 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
∀𝑡 ∈ suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡 |
53 | | sseq1 3946 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (𝑧 ⊆ 𝐴 ↔ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴)) |
54 | | treq 5197 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (Tr 𝑧 ↔ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
55 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝑧 |
56 | 50 | nfsuc 6337 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} |
57 | 55, 56 | raleqf 3332 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → (∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡)) |
58 | 53, 54, 57 | 3anbi123d 1435 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ((𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡) ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡))) |
59 | | sseq1 3946 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
60 | | treq 5197 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (Tr 𝑤 ↔ Tr 𝑧)) |
61 | | raleq 3342 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡)) |
62 | 59, 60, 61 | 3anbi123d 1435 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡) ↔ (𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡))) |
63 | 62 | cbvabv 2811 |
. . . . . . . . . . . . . . 15
⊢ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = {𝑧 ∣ (𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡)} |
64 | 58, 63 | elab2g 3611 |
. . . . . . . . . . . . . 14
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V → (suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡))) |
65 | 64 | biimprd 247 |
. . . . . . . . . . . . 13
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V → ((suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
66 | | sucexg 7655 |
. . . . . . . . . . . . 13
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ V) |
67 | 65, 66 | syl11 33 |
. . . . . . . . . . . 12
⊢ ((suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑡 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑡 ∈ 𝑡) → (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
68 | 42, 52, 67 | mp3an23 1452 |
. . . . . . . . . . 11
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 → (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
69 | 68 | com12 32 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
70 | | elssuni 4871 |
. . . . . . . . . . 11
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
71 | | sucssel 6358 |
. . . . . . . . . . 11
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
72 | 70, 71 | syl5 34 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
73 | 69, 72 | syld 47 |
. . . . . . . . 9
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
74 | 40, 73 | mpd 15 |
. . . . . . . 8
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) |
75 | 34, 74 | syl6 35 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
76 | 24, 75 | mpan2i 694 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊊ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
77 | 23, 76 | syl5bir 242 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
78 | 22, 77 | mpani 693 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → (¬ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)})) |
79 | 21, 78 | mt3i 149 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴) |
80 | 24, 44 | pm3.2i 471 |
. . . 4
⊢ (Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧) |
81 | | treq 5197 |
. . . . 5
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → (Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ↔ Tr 𝐴)) |
82 | | raleq 3342 |
. . . . 5
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → (∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧)) |
83 | 81, 82 | anbi12d 631 |
. . . 4
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → ((Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ∧ ∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} ¬ 𝑧 ∈ 𝑧) ↔ (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) |
84 | 80, 83 | mpbii 232 |
. . 3
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡)} = 𝐴 → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧)) |
85 | 79, 84 | syl 17 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴)) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧)) |
86 | 85 | ex 413 |
1
⊢ (𝐴 ∈ 𝑉 → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) |