Step | Hyp | Ref
| Expression |
1 | | elfzonn0 13287 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑘) → 𝑖 ∈ ℕ0) |
2 | 1 | nn0red 12151 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑘) → 𝑖 ∈ ℝ) |
3 | | nndivre 11871 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
4 | 2, 3 | sylan 583 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
5 | | elfzole1 13251 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑘) → 0 ≤ 𝑖) |
6 | 2, 5 | jca 515 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑘) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) |
7 | | nnrp 12597 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
8 | 7 | rpregt0d 12634 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
9 | | divge0 11701 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ℝ ∧ 0 ≤
𝑖) ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → 0 ≤ (𝑖 / 𝑘)) |
10 | 6, 8, 9 | syl2an 599 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑖 / 𝑘)) |
11 | | elfzo0le 13286 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑘) → 𝑖 ≤ 𝑘) |
12 | 11 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ≤ 𝑘) |
13 | 2 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ∈ ℝ) |
14 | | 1red 10834 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 1 ∈
ℝ) |
15 | 7 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
16 | 13, 14, 15 | ledivmuld 12681 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ (𝑘 · 1))) |
17 | | nncn 11838 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
18 | 17 | mulid1d 10850 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → (𝑘 · 1) = 𝑘) |
19 | 18 | breq2d 5065 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
20 | 19 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
21 | 16, 20 | bitrd 282 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ 𝑘)) |
22 | 12, 21 | mpbird 260 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ≤ 1) |
23 | | elicc01 13054 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 / 𝑘) ∈ (0[,]1) ↔ ((𝑖 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝑖 / 𝑘) ∧ (𝑖 / 𝑘) ≤ 1)) |
24 | 4, 10, 22, 23 | syl3anbrc 1345 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ (0[,]1)) |
25 | 24 | ancoms 462 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0..^𝑘)) → (𝑖 / 𝑘) ∈ (0[,]1)) |
26 | | elsni 4558 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ {𝑘} → 𝑗 = 𝑘) |
27 | 26 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) = (𝑖 / 𝑘)) |
28 | 27 | eleq1d 2822 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {𝑘} → ((𝑖 / 𝑗) ∈ (0[,]1) ↔ (𝑖 / 𝑘) ∈ (0[,]1))) |
29 | 25, 28 | syl5ibrcom 250 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0..^𝑘)) → (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) ∈ (0[,]1))) |
30 | 29 | impr 458 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ (𝑖 ∈ (0..^𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
31 | 30 | adantll 714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑖 ∈ (0..^𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
32 | | poimirlem30.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
33 | 32 | ffvelrnda 6904 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
34 | | xp1st 7793 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑘) ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(𝐺‘𝑘)) ∈ (ℕ0
↑m (1...𝑁))) |
35 | | elmapfn 8546 |
. . . . . . . . . . 11
⊢
((1st ‘(𝐺‘𝑘)) ∈ (ℕ0
↑m (1...𝑁))
→ (1st ‘(𝐺‘𝑘)) Fn (1...𝑁)) |
36 | 33, 34, 35 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐺‘𝑘)) Fn (1...𝑁)) |
37 | | poimirlem30.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st
‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) |
38 | | df-f 6384 |
. . . . . . . . . 10
⊢
((1st ‘(𝐺‘𝑘)):(1...𝑁)⟶(0..^𝑘) ↔ ((1st ‘(𝐺‘𝑘)) Fn (1...𝑁) ∧ ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘))) |
39 | 36, 37, 38 | sylanbrc 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐺‘𝑘)):(1...𝑁)⟶(0..^𝑘)) |
40 | | vex 3412 |
. . . . . . . . . . 11
⊢ 𝑘 ∈ V |
41 | 40 | fconst 6605 |
. . . . . . . . . 10
⊢
((1...𝑁) ×
{𝑘}):(1...𝑁)⟶{𝑘} |
42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘}) |
43 | | fzfid 13546 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑁) ∈ Fin) |
44 | | inidm 4133 |
. . . . . . . . 9
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
45 | 31, 39, 42, 43, 43, 44 | off 7486 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
46 | | poimir.i |
. . . . . . . . . 10
⊢ 𝐼 = ((0[,]1) ↑m
(1...𝑁)) |
47 | 46 | eleq2i 2829 |
. . . . . . . . 9
⊢
(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑m
(1...𝑁))) |
48 | | ovex 7246 |
. . . . . . . . . 10
⊢ (0[,]1)
∈ V |
49 | | ovex 7246 |
. . . . . . . . . 10
⊢
(1...𝑁) ∈
V |
50 | 48, 49 | elmap 8552 |
. . . . . . . . 9
⊢
(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑m
(1...𝑁)) ↔
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
51 | 47, 50 | bitri 278 |
. . . . . . . 8
⊢
(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
52 | 45, 51 | sylibr 237 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) ∈ 𝐼) |
53 | 52 | fmpttd 6932 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))):ℕ⟶𝐼) |
54 | 53 | frnd 6553 |
. . . . 5
⊢ (𝜑 → ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ⊆ 𝐼) |
55 | | ominf 8890 |
. . . . . . 7
⊢ ¬
ω ∈ Fin |
56 | | nnenom 13553 |
. . . . . . . . 9
⊢ ℕ
≈ ω |
57 | | enfi 8865 |
. . . . . . . . 9
⊢ (ℕ
≈ ω → (ℕ ∈ Fin ↔ ω ∈
Fin)) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . 8
⊢ (ℕ
∈ Fin ↔ ω ∈ Fin) |
59 | | iunid 4969 |
. . . . . . . . . . 11
⊢ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))){𝑐} = ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) |
60 | 59 | imaeq2i 5927 |
. . . . . . . . . 10
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))){𝑐}) = (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))) |
61 | | imaiun 7058 |
. . . . . . . . . 10
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))){𝑐}) = ∪
𝑐 ∈ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) |
62 | | ovex 7246 |
. . . . . . . . . . . . 13
⊢
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ V |
63 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) |
64 | 62, 63 | fnmpti 6521 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) Fn ℕ |
65 | | dffn3 6558 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) Fn ℕ ↔ (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))) |
66 | 64, 65 | mpbi 233 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) |
67 | | fimacnv 6567 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))) = ℕ) |
68 | 66, 67 | ax-mp 5 |
. . . . . . . . . 10
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))) = ℕ |
69 | 60, 61, 68 | 3eqtr3ri 2774 |
. . . . . . . . 9
⊢ ℕ =
∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) |
70 | 69 | eleq1i 2828 |
. . . . . . . 8
⊢ (ℕ
∈ Fin ↔ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
71 | 58, 70 | bitr3i 280 |
. . . . . . 7
⊢ (ω
∈ Fin ↔ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
72 | 55, 71 | mtbi 325 |
. . . . . 6
⊢ ¬
∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin |
73 | | ralnex 3158 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
74 | 73 | rexbii 3170 |
. . . . . . . . . . 11
⊢
(∃𝑖 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ∃𝑖 ∈ ℕ ¬ ∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
75 | | rexnal 3160 |
. . . . . . . . . . 11
⊢
(∃𝑖 ∈
ℕ ¬ ∃𝑘
∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
76 | 74, 75 | bitri 278 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
77 | 76 | ralbii 3088 |
. . . . . . . . 9
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 ↔ ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
78 | | ralnex 3158 |
. . . . . . . . 9
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
79 | 77, 78 | bitri 278 |
. . . . . . . 8
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
80 | | nnuz 12477 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
81 | | elnnuz 12478 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ ↔ 𝑖 ∈
(ℤ≥‘1)) |
82 | | fzouzsplit 13277 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈
(ℤ≥‘1) → (ℤ≥‘1) =
((1..^𝑖) ∪
(ℤ≥‘𝑖))) |
83 | 81, 82 | sylbi 220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ →
(ℤ≥‘1) = ((1..^𝑖) ∪ (ℤ≥‘𝑖))) |
84 | 80, 83 | syl5eq 2790 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → ℕ =
((1..^𝑖) ∪
(ℤ≥‘𝑖))) |
85 | 84 | difeq1d 4036 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → (ℕ
∖ (1..^𝑖)) =
(((1..^𝑖) ∪
(ℤ≥‘𝑖)) ∖ (1..^𝑖))) |
86 | | uncom 4067 |
. . . . . . . . . . . . . . . 16
⊢
((1..^𝑖) ∪
(ℤ≥‘𝑖)) = ((ℤ≥‘𝑖) ∪ (1..^𝑖)) |
87 | 86 | difeq1i 4033 |
. . . . . . . . . . . . . . 15
⊢
(((1..^𝑖) ∪
(ℤ≥‘𝑖)) ∖ (1..^𝑖)) = (((ℤ≥‘𝑖) ∪ (1..^𝑖)) ∖ (1..^𝑖)) |
88 | | difun2 4395 |
. . . . . . . . . . . . . . 15
⊢
(((ℤ≥‘𝑖) ∪ (1..^𝑖)) ∖ (1..^𝑖)) = ((ℤ≥‘𝑖) ∖ (1..^𝑖)) |
89 | 87, 88 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢
(((1..^𝑖) ∪
(ℤ≥‘𝑖)) ∖ (1..^𝑖)) = ((ℤ≥‘𝑖) ∖ (1..^𝑖)) |
90 | 85, 89 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (ℕ
∖ (1..^𝑖)) =
((ℤ≥‘𝑖) ∖ (1..^𝑖))) |
91 | | difss 4046 |
. . . . . . . . . . . . 13
⊢
((ℤ≥‘𝑖) ∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖) |
92 | 90, 91 | eqsstrdi 3955 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → (ℕ
∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖)) |
93 | | ssralv 3967 |
. . . . . . . . . . . 12
⊢ ((ℕ
∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖) → (∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐)) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ →
(∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐)) |
95 | | impexp 454 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧ ¬
𝑘 ∈ (1..^𝑖)) → ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐) ↔ (𝑘 ∈ ℕ → (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))) |
96 | | eldif 3876 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (ℕ ∖
(1..^𝑖)) ↔ (𝑘 ∈ ℕ ∧ ¬
𝑘 ∈ (1..^𝑖))) |
97 | 96 | imbi1i 353 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (ℕ ∖
(1..^𝑖)) → ¬
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) ↔ ((𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ (1..^𝑖)) → ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐)) |
98 | | con34b 319 |
. . . . . . . . . . . . . . . 16
⊢
((((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)) ↔ (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)) |
99 | 98 | imbi2i 339 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ →
(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖))) ↔ (𝑘 ∈ ℕ → (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))) |
100 | 95, 97, 99 | 3bitr4i 306 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (ℕ ∖
(1..^𝑖)) → ¬
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) ↔ (𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
101 | 100 | albii 1827 |
. . . . . . . . . . . . 13
⊢
(∀𝑘(𝑘 ∈ (ℕ ∖
(1..^𝑖)) → ¬
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
102 | | df-ral 3066 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
(ℕ ∖ (1..^𝑖))
¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ∀𝑘(𝑘 ∈ (ℕ ∖ (1..^𝑖)) → ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐)) |
103 | | vex 3412 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ∈ V |
104 | 63 | mptiniseg 6102 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ V → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) = {𝑘 ∈ ℕ ∣ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐}) |
105 | 103, 104 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) = {𝑘 ∈ ℕ ∣ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐} |
106 | 105 | sseq1i 3929 |
. . . . . . . . . . . . . 14
⊢ ((◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) ↔ {𝑘 ∈ ℕ ∣ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐} ⊆ (1..^𝑖)) |
107 | | rabss 3985 |
. . . . . . . . . . . . . 14
⊢ ({𝑘 ∈ ℕ ∣
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐} ⊆ (1..^𝑖) ↔ ∀𝑘 ∈ ℕ (((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖))) |
108 | | df-ral 3066 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
ℕ (((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
109 | 106, 107,
108 | 3bitri 300 |
. . . . . . . . . . . . 13
⊢ ((◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
110 | 101, 102,
109 | 3bitr4i 306 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
(ℕ ∖ (1..^𝑖))
¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖)) |
111 | | fzofi 13547 |
. . . . . . . . . . . . 13
⊢
(1..^𝑖) ∈
Fin |
112 | | ssfi 8851 |
. . . . . . . . . . . . 13
⊢
(((1..^𝑖) ∈ Fin
∧ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖)) → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
113 | 111, 112 | mpan 690 |
. . . . . . . . . . . 12
⊢ ((◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
114 | 110, 113 | sylbi 220 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℕ ∖ (1..^𝑖))
¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
115 | 94, 114 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ →
(∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)) |
116 | 115 | rexlimiv 3199 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
117 | 116 | ralimi 3083 |
. . . . . . . 8
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
118 | 79, 117 | sylbir 238 |
. . . . . . 7
⊢ (¬
∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
119 | | iunfi 8964 |
. . . . . . . 8
⊢ ((ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin ∧ ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) → ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
120 | 119 | ex 416 |
. . . . . . 7
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → (∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin → ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)) |
121 | 118, 120 | syl5 34 |
. . . . . 6
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → (¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∪
𝑐 ∈ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)) |
122 | 72, 121 | mt3i 151 |
. . . . 5
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) |
123 | | ssrexv 3968 |
. . . . 5
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 → (∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)) |
124 | 54, 122, 123 | syl2im 40 |
. . . 4
⊢ (𝜑 → (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∈ Fin →
∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)) |
125 | | unitssre 13087 |
. . . . . . . . . . . 12
⊢ (0[,]1)
⊆ ℝ |
126 | | elmapi 8530 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ((0[,]1)
↑m (1...𝑁))
→ 𝑐:(1...𝑁)⟶(0[,]1)) |
127 | 126, 46 | eleq2s 2856 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝐼 → 𝑐:(1...𝑁)⟶(0[,]1)) |
128 | 127 | ffvelrnda 6904 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) → (𝑐‘𝑚) ∈ (0[,]1)) |
129 | 125, 128 | sseldi 3899 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) → (𝑐‘𝑚) ∈ ℝ) |
130 | | nnrp 12597 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ+) |
131 | 130 | rpreccld 12638 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → (1 /
𝑖) ∈
ℝ+) |
132 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
133 | 132 | rexmet 23688 |
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
134 | | blcntr 23311 |
. . . . . . . . . . . 12
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ (𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ+)
→ (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
135 | 133, 134 | mp3an1 1450 |
. . . . . . . . . . 11
⊢ (((𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ+)
→ (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
136 | 129, 131,
135 | syl2an 599 |
. . . . . . . . . 10
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) ∧ 𝑖 ∈ ℕ) → (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
137 | 136 | an32s 652 |
. . . . . . . . 9
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
138 | | fveq1 6716 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → (((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) = (𝑐‘𝑚)) |
139 | 138 | eleq1d 2822 |
. . . . . . . . 9
⊢
(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ((((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
140 | 137, 139 | syl5ibrcom 250 |
. . . . . . . 8
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → (((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
141 | 140 | ralrimdva 3110 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
142 | 141 | reximdv 3192 |
. . . . . 6
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
143 | 142 | ralimdva 3100 |
. . . . 5
⊢ (𝑐 ∈ 𝐼 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
144 | 143 | reximia 3165 |
. . . 4
⊢
(∃𝑐 ∈
𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
145 | 124, 144 | syl6 35 |
. . 3
⊢ (𝜑 → (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∈ Fin →
∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
146 | | poimir.r |
. . . . . . . 8
⊢ 𝑅 =
(∏t‘((1...𝑁) × {(topGen‘ran
(,))})) |
147 | 49, 48 | ixpconst 8588 |
. . . . . . . . 9
⊢ X𝑛 ∈
(1...𝑁)(0[,]1) = ((0[,]1)
↑m (1...𝑁)) |
148 | 46, 147 | eqtr4i 2768 |
. . . . . . . 8
⊢ 𝐼 = X𝑛 ∈ (1...𝑁)(0[,]1) |
149 | 146, 148 | oveq12i 7225 |
. . . . . . 7
⊢ (𝑅 ↾t 𝐼) =
((∏t‘((1...𝑁) × {(topGen‘ran (,))}))
↾t X𝑛 ∈ (1...𝑁)(0[,]1)) |
150 | | fzfid 13546 |
. . . . . . . . 9
⊢ (⊤
→ (1...𝑁) ∈
Fin) |
151 | | retop 23659 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) ∈ Top |
152 | 151 | fconst6 6609 |
. . . . . . . . . 10
⊢
((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top |
153 | 152 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top) |
154 | 48 | a1i 11 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑛
∈ (1...𝑁)) →
(0[,]1) ∈ V) |
155 | 150, 153,
154 | ptrest 35513 |
. . . . . . . 8
⊢ (⊤
→ ((∏t‘((1...𝑁) × {(topGen‘ran (,))}))
↾t X𝑛 ∈ (1...𝑁)(0[,]1)) = (∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1))))) |
156 | 155 | mptru 1550 |
. . . . . . 7
⊢
((∏t‘((1...𝑁) × {(topGen‘ran (,))}))
↾t X𝑛 ∈ (1...𝑁)(0[,]1)) = (∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1)))) |
157 | | fvex 6730 |
. . . . . . . . . . . 12
⊢
(topGen‘ran (,)) ∈ V |
158 | 157 | fvconst2 7019 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛) =
(topGen‘ran (,))) |
159 | 158 | oveq1d 7228 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) → ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1)) = ((topGen‘ran (,)) ↾t
(0[,]1))) |
160 | 159 | mpteq2ia 5146 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1))) = (𝑛 ∈ (1...𝑁) ↦ ((topGen‘ran (,))
↾t (0[,]1))) |
161 | | fconstmpt 5611 |
. . . . . . . . 9
⊢
((1...𝑁) ×
{((topGen‘ran (,)) ↾t (0[,]1))}) = (𝑛 ∈ (1...𝑁) ↦ ((topGen‘ran (,))
↾t (0[,]1))) |
162 | 160, 161 | eqtr4i 2768 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1))) = ((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))}) |
163 | 162 | fveq2i 6720 |
. . . . . . 7
⊢
(∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1)))) = (∏t‘((1...𝑁) × {((topGen‘ran
(,)) ↾t (0[,]1))})) |
164 | 149, 156,
163 | 3eqtri 2769 |
. . . . . 6
⊢ (𝑅 ↾t 𝐼) =
(∏t‘((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))})) |
165 | | fzfi 13545 |
. . . . . . 7
⊢
(1...𝑁) ∈
Fin |
166 | | dfii2 23779 |
. . . . . . . . 9
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
167 | | iicmp 23783 |
. . . . . . . . 9
⊢ II ∈
Comp |
168 | 166, 167 | eqeltrri 2835 |
. . . . . . . 8
⊢
((topGen‘ran (,)) ↾t (0[,]1)) ∈
Comp |
169 | 168 | fconst6 6609 |
. . . . . . 7
⊢
((1...𝑁) ×
{((topGen‘ran (,)) ↾t (0[,]1))}):(1...𝑁)⟶Comp |
170 | | ptcmpfi 22710 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ ((1...𝑁) ×
{((topGen‘ran (,)) ↾t (0[,]1))}):(1...𝑁)⟶Comp) →
(∏t‘((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))})) ∈ Comp) |
171 | 165, 169,
170 | mp2an 692 |
. . . . . 6
⊢
(∏t‘((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))})) ∈ Comp |
172 | 164, 171 | eqeltri 2834 |
. . . . 5
⊢ (𝑅 ↾t 𝐼) ∈ Comp |
173 | | rehaus 23696 |
. . . . . . . . . . . 12
⊢
(topGen‘ran (,)) ∈ Haus |
174 | 173 | fconst6 6609 |
. . . . . . . . . . 11
⊢
((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Haus |
175 | | pthaus 22535 |
. . . . . . . . . . 11
⊢
(((1...𝑁) ∈ Fin
∧ ((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Haus) →
(∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈
Haus) |
176 | 165, 174,
175 | mp2an 692 |
. . . . . . . . . 10
⊢
(∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈
Haus |
177 | 146, 176 | eqeltri 2834 |
. . . . . . . . 9
⊢ 𝑅 ∈ Haus |
178 | | haustop 22228 |
. . . . . . . . 9
⊢ (𝑅 ∈ Haus → 𝑅 ∈ Top) |
179 | 177, 178 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑅 ∈ Top |
180 | | reex 10820 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
181 | | mapss 8570 |
. . . . . . . . . 10
⊢ ((ℝ
∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m
(1...𝑁)) ⊆ (ℝ
↑m (1...𝑁))) |
182 | 180, 125,
181 | mp2an 692 |
. . . . . . . . 9
⊢ ((0[,]1)
↑m (1...𝑁))
⊆ (ℝ ↑m (1...𝑁)) |
183 | 46, 182 | eqsstri 3935 |
. . . . . . . 8
⊢ 𝐼 ⊆ (ℝ
↑m (1...𝑁)) |
184 | | uniretop 23660 |
. . . . . . . . . . 11
⊢ ℝ =
∪ (topGen‘ran (,)) |
185 | 146, 184 | ptuniconst 22495 |
. . . . . . . . . 10
⊢
(((1...𝑁) ∈ Fin
∧ (topGen‘ran (,)) ∈ Top) → (ℝ ↑m
(1...𝑁)) = ∪ 𝑅) |
186 | 165, 151,
185 | mp2an 692 |
. . . . . . . . 9
⊢ (ℝ
↑m (1...𝑁))
= ∪ 𝑅 |
187 | 186 | restuni 22059 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ
↑m (1...𝑁))) → 𝐼 = ∪ (𝑅 ↾t 𝐼)) |
188 | 179, 183,
187 | mp2an 692 |
. . . . . . 7
⊢ 𝐼 = ∪
(𝑅 ↾t
𝐼) |
189 | 188 | bwth 22307 |
. . . . . 6
⊢ (((𝑅 ↾t 𝐼) ∈ Comp ∧ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 ∧ ¬ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∈ Fin) →
∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))))) |
190 | 189 | 3expia 1123 |
. . . . 5
⊢ (((𝑅 ↾t 𝐼) ∈ Comp ∧ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼) → (¬ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∈ Fin →
∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))))) |
191 | 172, 54, 190 | sylancr 590 |
. . . 4
⊢ (𝜑 → (¬ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))))) |
192 | | cmptop 22292 |
. . . . . . . . 9
⊢ ((𝑅 ↾t 𝐼) ∈ Comp → (𝑅 ↾t 𝐼) ∈ Top) |
193 | 172, 192 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑅 ↾t 𝐼) ∈ Top |
194 | 188 | islp3 22043 |
. . . . . . . 8
⊢ (((𝑅 ↾t 𝐼) ∈ Top ∧ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
195 | 193, 194 | mp3an1 1450 |
. . . . . . 7
⊢ ((ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
196 | 54, 195 | sylan 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
197 | | fzfid 13546 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (1...𝑁) ∈ Fin) |
198 | 152 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → ((1...𝑁) × {(topGen‘ran
(,))}):(1...𝑁)⟶Top) |
199 | | nnrecre 11872 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ → (1 /
𝑖) ∈
ℝ) |
200 | 199 | rexrd 10883 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ → (1 /
𝑖) ∈
ℝ*) |
201 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
202 | 132, 201 | tgioo 23693 |
. . . . . . . . . . . . . . . . . 18
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
203 | 202 | blopn 23398 |
. . . . . . . . . . . . . . . . 17
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ (𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ*)
→ ((𝑐‘𝑚)(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
204 | 133, 203 | mp3an1 1450 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ*)
→ ((𝑐‘𝑚)(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
205 | 129, 200,
204 | syl2an 599 |
. . . . . . . . . . . . . . 15
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) ∧ 𝑖 ∈ ℕ) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
206 | 205 | an32s 652 |
. . . . . . . . . . . . . 14
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
207 | 157 | fvconst2 7019 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑚) =
(topGen‘ran (,))) |
208 | 207 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑚) =
(topGen‘ran (,))) |
209 | 206, 208 | eleqtrrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ (((1...𝑁) × {(topGen‘ran
(,))})‘𝑚)) |
210 | | noel 4245 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑚 ∈
∅ |
211 | | difid 4285 |
. . . . . . . . . . . . . . . . 17
⊢
((1...𝑁) ∖
(1...𝑁)) =
∅ |
212 | 211 | eleq2i 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) ↔ 𝑚 ∈ ∅) |
213 | 210, 212 | mtbir 326 |
. . . . . . . . . . . . . . 15
⊢ ¬
𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) |
214 | 213 | pm2.21i 119 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) = ∪
(((1...𝑁) ×
{(topGen‘ran (,))})‘𝑚)) |
215 | 214 | adantl 485 |
. . . . . . . . . . . . 13
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ ((1...𝑁) ∖ (1...𝑁))) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) = ∪
(((1...𝑁) ×
{(topGen‘ran (,))})‘𝑚)) |
216 | 197, 198,
197, 209, 215 | ptopn 22480 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈
(∏t‘((1...𝑁) × {(topGen‘ran
(,))}))) |
217 | 216, 146 | eleqtrrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅) |
218 | | ovex 7246 |
. . . . . . . . . . . . 13
⊢ ((0[,]1)
↑m (1...𝑁))
∈ V |
219 | 46, 218 | eqeltri 2834 |
. . . . . . . . . . . 12
⊢ 𝐼 ∈ V |
220 | | elrestr 16933 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Haus ∧ 𝐼 ∈ V ∧ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅) → (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼)) |
221 | 177, 219,
220 | mp3an12 1453 |
. . . . . . . . . . 11
⊢ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅 → (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼)) |
222 | 217, 221 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼)) |
223 | | difss 4046 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) |
224 | | imassrn 5940 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ⊆ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) |
225 | 223, 224 | sstri 3910 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) |
226 | 225, 54 | sstrid 3912 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼) |
227 | | haust1 22249 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Haus → 𝑅 ∈ Fre) |
228 | 177, 227 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 𝑅 ∈ Fre |
229 | | restt1 22264 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Fre ∧ 𝐼 ∈ V) → (𝑅 ↾t 𝐼) ∈ Fre) |
230 | 228, 219,
229 | mp2an 692 |
. . . . . . . . . . . 12
⊢ (𝑅 ↾t 𝐼) ∈ Fre |
231 | | funmpt 6418 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) |
232 | | imafi 8853 |
. . . . . . . . . . . . . 14
⊢ ((Fun
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ (1..^𝑖) ∈ Fin) → ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin) |
233 | 231, 111,
232 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin |
234 | | diffi 8906 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin) |
235 | 233, 234 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin |
236 | 188 | t1ficld 22224 |
. . . . . . . . . . . 12
⊢ (((𝑅 ↾t 𝐼) ∈ Fre ∧ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼 ∧ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin) → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) |
237 | 230, 235,
236 | mp3an13 1454 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼 → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) |
238 | 226, 237 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) |
239 | 188 | difopn 21931 |
. . . . . . . . . 10
⊢ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼) ∧ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) → ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼)) |
240 | 222, 238,
239 | syl2anr 600 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ)) → ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼)) |
241 | 240 | anassrs 471 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼)) |
242 | | eleq2 2826 |
. . . . . . . . . . 11
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (𝑐 ∈ 𝑣 ↔ 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})))) |
243 | | ineq1 4120 |
. . . . . . . . . . . 12
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) = (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐}))) |
244 | 243 | neeq1d 3000 |
. . . . . . . . . . 11
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → ((𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ ↔ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) |
245 | 242, 244 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → ((𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) ↔ (𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
246 | 245 | rspcva 3535 |
. . . . . . . . 9
⊢ ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼) ∧ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) → (𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) |
247 | 127 | ffnd 6546 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝐼 → 𝑐 Fn (1...𝑁)) |
248 | 247 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 Fn (1...𝑁)) |
249 | 137 | ralrimiva 3105 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → ∀𝑚 ∈ (1...𝑁)(𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
250 | 103 | elixp 8585 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑐 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
251 | 248, 249,
250 | sylanbrc 586 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
252 | | simpl 486 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ 𝐼) |
253 | 251, 252 | elind 4108 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼)) |
254 | | neldifsnd 4706 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → ¬ 𝑐 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) |
255 | 253, 254 | eldifd 3877 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))) |
256 | 255 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))) |
257 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) → ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
258 | 257 | anim1i 618 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) → (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
259 | | simpl 486 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}) → 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) |
260 | 258, 259 | anim12i 616 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) → ((∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))))) |
261 | | elin 3882 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ (𝑗 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐}))) |
262 | | andir 1009 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑗 Fn
(1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ∨ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})))) |
263 | | eldif 3876 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ (𝑗 ∈ (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∧ ¬ 𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))) |
264 | | elin 3882 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ↔ (𝑗 ∈ X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ 𝑗 ∈ 𝐼)) |
265 | | vex 3412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑗 ∈ V |
266 | 265 | elixp 8585 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
267 | 266 | anbi1i 627 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ 𝑗 ∈ 𝐼) ↔ ((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼)) |
268 | 264, 267 | bitri 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ↔ ((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼)) |
269 | | ianor 982 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ ¬ 𝑗 ∈ {𝑐}) ↔ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})) |
270 | | eldif 3876 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ↔ (𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ ¬ 𝑗 ∈ {𝑐})) |
271 | 269, 270 | xchnxbir 336 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑗 ∈ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ↔ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})) |
272 | 268, 271 | anbi12i 630 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∧ ¬ 𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐}))) |
273 | | andi 1008 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}))) |
274 | 263, 272,
273 | 3bitri 300 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}))) |
275 | | eldif 3876 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐}) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) |
276 | 274, 275 | anbi12i 630 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))) |
277 | | pm3.24 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
(¬ 𝑗 ∈ {𝑐} ∧ ¬ ¬ 𝑗 ∈ {𝑐}) |
278 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) → ¬ ¬ 𝑗 ∈ {𝑐}) |
279 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}) → ¬ 𝑗 ∈ {𝑐}) |
280 | 278, 279 | anim12ci 617 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) → (¬ 𝑗 ∈ {𝑐} ∧ ¬ ¬ 𝑗 ∈ {𝑐})) |
281 | 277, 280 | mto 200 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) |
282 | 281 | biorfi 939 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ∨ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})))) |
283 | 262, 276,
282 | 3bitr4i 306 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))) |
284 | 261, 283 | bitri 278 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))) |
285 | | ancom 464 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ↔ (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))))) |
286 | | anass 472 |
. . . . . . . . . . . . . . . 16
⊢
(((∀𝑚 ∈
(1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ↔ (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))))) |
287 | 285, 286 | bitr4i 281 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ↔ ((∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))))) |
288 | 260, 284,
287 | 3imtr4i 295 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) → ((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
289 | | ancom 464 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
290 | | eldif 3876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
291 | 289, 290 | bitr4i 281 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ↔ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
292 | | imadmrn 5939 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ dom (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) = ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) |
293 | 62, 63 | dmmpti 6522 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = ℕ |
294 | 293 | imaeq2i 5927 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ dom (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) = ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “
ℕ) |
295 | 292, 294 | eqtr3i 2767 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “
ℕ) |
296 | 295 | difeq1i 4033 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) = (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ ℕ) ∖
((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) |
297 | | imadifss 35489 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ℕ) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (ℕ ∖
(1..^𝑖))) |
298 | 296, 297 | eqsstri 3935 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (ℕ ∖
(1..^𝑖))) |
299 | | imass2 5970 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℕ
∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖) → ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (ℕ ∖
(1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖))) |
300 | 92, 299 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖))) |
301 | | df-ima 5564 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖)) = ran ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ↾
(ℤ≥‘𝑖)) |
302 | | uznnssnn 12491 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ →
(ℤ≥‘𝑖) ⊆ ℕ) |
303 | 302 | resmptd 5908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ↾
(ℤ≥‘𝑖)) = (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) |
304 | 303 | rneqd 5807 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ → ran
((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ↾
(ℤ≥‘𝑖)) = ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) |
305 | 301, 304 | syl5eq 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖)) = ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) |
306 | 300, 305 | sseqtrd 3941 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖))) ⊆ ran (𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))) |
307 | 298, 306 | sstrid 3912 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ → (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ran (𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))) |
308 | 307 | sseld 3900 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ → (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) → 𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))))) |
309 | 291, 308 | syl5bi 245 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → ((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) → 𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))))) |
310 | 309 | anim1d 614 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → (((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) → (𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))))) |
311 | 288, 310 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) → (𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))))) |
312 | 311 | eximdv 1925 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ →
(∃𝑗 𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) → ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))))) |
313 | | n0 4261 |
. . . . . . . . . . . 12
⊢ ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐}))) |
314 | 62 | rgenw 3073 |
. . . . . . . . . . . . . 14
⊢
∀𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ V |
315 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) |
316 | | fveq1 6716 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) → (𝑗‘𝑚) = (((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚)) |
317 | 316 | eleq1d 2822 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) → ((𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
318 | 317 | ralbidv 3118 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})) → (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
319 | 315, 318 | rexrnmptw 6914 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ V → (∃𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
320 | 314, 319 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(∃𝑗 ∈ ran
(𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
321 | | df-rex 3067 |
. . . . . . . . . . . . 13
⊢
(∃𝑗 ∈ ran
(𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
322 | 320, 321 | bitr3i 280 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
323 | 312, 313,
322 | 3imtr4g 299 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
324 | 323 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
325 | 256, 324 | embantd 59 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
326 | 246, 325 | syl5 34 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼) ∧ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
327 | 241, 326 | mpand 695 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → (∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
328 | 327 | ralrimdva 3110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
329 | 196, 328 | sylbid 243 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) → ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
330 | 329 | reximdva 3193 |
. . . 4
⊢ (𝜑 → (∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘f /
((1...𝑁) × {𝑘})))) → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
331 | 191, 330 | syld 47 |
. . 3
⊢ (𝜑 → (¬ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
332 | 145, 331 | pm2.61d 182 |
. 2
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
333 | | poimir.0 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
334 | | poimir.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
335 | | poimirlem30.x |
. . . 4
⊢ 𝑋 = ((𝐹‘(((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑛) |
336 | | poimirlem30.4 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋) |
337 | 333, 46, 146, 334, 335, 32, 37, 336 | poimirlem29 35543 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) → ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)))) |
338 | 337 | reximdv 3192 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)))) |
339 | 332, 338 | mpd 15 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |