Step | Hyp | Ref
| Expression |
1 | | elfzonn0 13674 |
. . . . . . . . . . . . . . . 16
β’ (π β (0..^π) β π β β0) |
2 | 1 | nn0red 12530 |
. . . . . . . . . . . . . . 15
β’ (π β (0..^π) β π β β) |
3 | | nndivre 12250 |
. . . . . . . . . . . . . . 15
β’ ((π β β β§ π β β) β (π / π) β β) |
4 | 2, 3 | sylan 579 |
. . . . . . . . . . . . . 14
β’ ((π β (0..^π) β§ π β β) β (π / π) β β) |
5 | | elfzole1 13637 |
. . . . . . . . . . . . . . . 16
β’ (π β (0..^π) β 0 β€ π) |
6 | 2, 5 | jca 511 |
. . . . . . . . . . . . . . 15
β’ (π β (0..^π) β (π β β β§ 0 β€ π)) |
7 | | nnrp 12982 |
. . . . . . . . . . . . . . . 16
β’ (π β β β π β
β+) |
8 | 7 | rpregt0d 13019 |
. . . . . . . . . . . . . . 15
β’ (π β β β (π β β β§ 0 <
π)) |
9 | | divge0 12080 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ 0 β€
π) β§ (π β β β§ 0 <
π)) β 0 β€ (π / π)) |
10 | 6, 8, 9 | syl2an 595 |
. . . . . . . . . . . . . 14
β’ ((π β (0..^π) β§ π β β) β 0 β€ (π / π)) |
11 | | elfzo0le 13673 |
. . . . . . . . . . . . . . . 16
β’ (π β (0..^π) β π β€ π) |
12 | 11 | adantr 480 |
. . . . . . . . . . . . . . 15
β’ ((π β (0..^π) β§ π β β) β π β€ π) |
13 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (0..^π) β§ π β β) β π β β) |
14 | | 1red 11212 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (0..^π) β§ π β β) β 1 β
β) |
15 | 7 | adantl 481 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (0..^π) β§ π β β) β π β β+) |
16 | 13, 14, 15 | ledivmuld 13066 |
. . . . . . . . . . . . . . . 16
β’ ((π β (0..^π) β§ π β β) β ((π / π) β€ 1 β π β€ (π Β· 1))) |
17 | | nncn 12217 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β β π β
β) |
18 | 17 | mulridd 11228 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β β (π Β· 1) = π) |
19 | 18 | breq2d 5150 |
. . . . . . . . . . . . . . . . 17
β’ (π β β β (π β€ (π Β· 1) β π β€ π)) |
20 | 19 | adantl 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β (0..^π) β§ π β β) β (π β€ (π Β· 1) β π β€ π)) |
21 | 16, 20 | bitrd 279 |
. . . . . . . . . . . . . . 15
β’ ((π β (0..^π) β§ π β β) β ((π / π) β€ 1 β π β€ π)) |
22 | 12, 21 | mpbird 257 |
. . . . . . . . . . . . . 14
β’ ((π β (0..^π) β§ π β β) β (π / π) β€ 1) |
23 | | elicc01 13440 |
. . . . . . . . . . . . . 14
β’ ((π / π) β (0[,]1) β ((π / π) β β β§ 0 β€ (π / π) β§ (π / π) β€ 1)) |
24 | 4, 10, 22, 23 | syl3anbrc 1340 |
. . . . . . . . . . . . 13
β’ ((π β (0..^π) β§ π β β) β (π / π) β (0[,]1)) |
25 | 24 | ancoms 458 |
. . . . . . . . . . . 12
β’ ((π β β β§ π β (0..^π)) β (π / π) β (0[,]1)) |
26 | | elsni 4637 |
. . . . . . . . . . . . . 14
β’ (π β {π} β π = π) |
27 | 26 | oveq2d 7417 |
. . . . . . . . . . . . 13
β’ (π β {π} β (π / π) = (π / π)) |
28 | 27 | eleq1d 2810 |
. . . . . . . . . . . 12
β’ (π β {π} β ((π / π) β (0[,]1) β (π / π) β (0[,]1))) |
29 | 25, 28 | syl5ibrcom 246 |
. . . . . . . . . . 11
β’ ((π β β β§ π β (0..^π)) β (π β {π} β (π / π) β (0[,]1))) |
30 | 29 | impr 454 |
. . . . . . . . . 10
β’ ((π β β β§ (π β (0..^π) β§ π β {π})) β (π / π) β (0[,]1)) |
31 | 30 | adantll 711 |
. . . . . . . . 9
β’ (((π β§ π β β) β§ (π β (0..^π) β§ π β {π})) β (π / π) β (0[,]1)) |
32 | | poimirlem30.2 |
. . . . . . . . . . . 12
β’ (π β πΊ:ββΆ((β0
βm (1...π))
Γ {π β£ π:(1...π)β1-1-ontoβ(1...π)})) |
33 | 32 | ffvelcdmda 7076 |
. . . . . . . . . . 11
β’ ((π β§ π β β) β (πΊβπ) β ((β0
βm (1...π))
Γ {π β£ π:(1...π)β1-1-ontoβ(1...π)})) |
34 | | xp1st 8000 |
. . . . . . . . . . 11
β’ ((πΊβπ) β ((β0
βm (1...π))
Γ {π β£ π:(1...π)β1-1-ontoβ(1...π)}) β (1st β(πΊβπ)) β (β0
βm (1...π))) |
35 | | elmapfn 8855 |
. . . . . . . . . . 11
β’
((1st β(πΊβπ)) β (β0
βm (1...π))
β (1st β(πΊβπ)) Fn (1...π)) |
36 | 33, 34, 35 | 3syl 18 |
. . . . . . . . . 10
β’ ((π β§ π β β) β (1st
β(πΊβπ)) Fn (1...π)) |
37 | | poimirlem30.3 |
. . . . . . . . . 10
β’ ((π β§ π β β) β ran (1st
β(πΊβπ)) β (0..^π)) |
38 | | df-f 6537 |
. . . . . . . . . 10
β’
((1st β(πΊβπ)):(1...π)βΆ(0..^π) β ((1st β(πΊβπ)) Fn (1...π) β§ ran (1st β(πΊβπ)) β (0..^π))) |
39 | 36, 37, 38 | sylanbrc 582 |
. . . . . . . . 9
β’ ((π β§ π β β) β (1st
β(πΊβπ)):(1...π)βΆ(0..^π)) |
40 | | vex 3470 |
. . . . . . . . . . 11
β’ π β V |
41 | 40 | fconst 6767 |
. . . . . . . . . 10
β’
((1...π) Γ
{π}):(1...π)βΆ{π} |
42 | 41 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β β) β ((1...π) Γ {π}):(1...π)βΆ{π}) |
43 | | fzfid 13935 |
. . . . . . . . 9
β’ ((π β§ π β β) β (1...π) β Fin) |
44 | | inidm 4210 |
. . . . . . . . 9
β’
((1...π) β©
(1...π)) = (1...π) |
45 | 31, 39, 42, 43, 43, 44 | off 7681 |
. . . . . . . 8
β’ ((π β§ π β β) β ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})):(1...π)βΆ(0[,]1)) |
46 | | poimir.i |
. . . . . . . . . 10
β’ πΌ = ((0[,]1) βm
(1...π)) |
47 | 46 | eleq2i 2817 |
. . . . . . . . 9
β’
(((1st β(πΊβπ)) βf / ((1...π) Γ {π})) β πΌ β ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) β ((0[,]1) βm
(1...π))) |
48 | | ovex 7434 |
. . . . . . . . . 10
β’ (0[,]1)
β V |
49 | | ovex 7434 |
. . . . . . . . . 10
β’
(1...π) β
V |
50 | 48, 49 | elmap 8861 |
. . . . . . . . 9
β’
(((1st β(πΊβπ)) βf / ((1...π) Γ {π})) β ((0[,]1) βm
(1...π)) β
((1st β(πΊβπ)) βf / ((1...π) Γ {π})):(1...π)βΆ(0[,]1)) |
51 | 47, 50 | bitri 275 |
. . . . . . . 8
β’
(((1st β(πΊβπ)) βf / ((1...π) Γ {π})) β πΌ β ((1st β(πΊβπ)) βf / ((1...π) Γ {π})):(1...π)βΆ(0[,]1)) |
52 | 45, 51 | sylibr 233 |
. . . . . . 7
β’ ((π β§ π β β) β ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) β πΌ) |
53 | 52 | fmpttd 7106 |
. . . . . 6
β’ (π β (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))):ββΆπΌ) |
54 | 53 | frnd 6715 |
. . . . 5
β’ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β πΌ) |
55 | | ominf 9254 |
. . . . . . 7
β’ Β¬
Ο β Fin |
56 | | nnenom 13942 |
. . . . . . . . 9
β’ β
β Ο |
57 | | enfi 9186 |
. . . . . . . . 9
β’ (β
β Ο β (β β Fin β Ο β
Fin)) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . 8
β’ (β
β Fin β Ο β Fin) |
59 | | iunid 5053 |
. . . . . . . . . . 11
β’ βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))){π} = ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) |
60 | 59 | imaeq2i 6047 |
. . . . . . . . . 10
β’ (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))){π}) = (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π})))) |
61 | | imaiun 7236 |
. . . . . . . . . 10
β’ (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))){π}) = βͺ
π β ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) |
62 | | ovex 7434 |
. . . . . . . . . . . . 13
β’
((1st β(πΊβπ)) βf / ((1...π) Γ {π})) β V |
63 | | eqid 2724 |
. . . . . . . . . . . . 13
β’ (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) = (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) |
64 | 62, 63 | fnmpti 6683 |
. . . . . . . . . . . 12
β’ (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) Fn β |
65 | | dffn3 6720 |
. . . . . . . . . . . 12
β’ ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) Fn β β (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))):ββΆran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π})))) |
66 | 64, 65 | mpbi 229 |
. . . . . . . . . . 11
β’ (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))):ββΆran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) |
67 | | fimacnv 6729 |
. . . . . . . . . . 11
β’ ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))):ββΆran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π})))) = β) |
68 | 66, 67 | ax-mp 5 |
. . . . . . . . . 10
β’ (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π})))) = β |
69 | 60, 61, 68 | 3eqtr3ri 2761 |
. . . . . . . . 9
β’ β =
βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) |
70 | 69 | eleq1i 2816 |
. . . . . . . 8
β’ (β
β Fin β βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
71 | 58, 70 | bitr3i 277 |
. . . . . . 7
β’ (Ο
β Fin β βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
72 | 55, 71 | mtbi 322 |
. . . . . 6
β’ Β¬
βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin |
73 | | ralnex 3064 |
. . . . . . . . . . . 12
β’
(βπ β
(β€β₯βπ) Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β Β¬ βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
74 | 73 | rexbii 3086 |
. . . . . . . . . . 11
β’
(βπ β
β βπ β
(β€β₯βπ) Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ β β Β¬ βπ β
(β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
75 | | rexnal 3092 |
. . . . . . . . . . 11
β’
(βπ β
β Β¬ βπ
β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β Β¬ βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
76 | 74, 75 | bitri 275 |
. . . . . . . . . 10
β’
(βπ β
β βπ β
(β€β₯βπ) Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β Β¬ βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
77 | 76 | ralbii 3085 |
. . . . . . . . 9
β’
(βπ β
ran (π β β
β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ) Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) Β¬ βπ β β βπ β
(β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
78 | | ralnex 3064 |
. . . . . . . . 9
β’
(βπ β
ran (π β β
β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) Β¬ βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β Β¬ βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
79 | 77, 78 | bitri 275 |
. . . . . . . 8
β’
(βπ β
ran (π β β
β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ) Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β Β¬ βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
80 | | nnuz 12862 |
. . . . . . . . . . . . . . . 16
β’ β =
(β€β₯β1) |
81 | | elnnuz 12863 |
. . . . . . . . . . . . . . . . 17
β’ (π β β β π β
(β€β₯β1)) |
82 | | fzouzsplit 13664 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(β€β₯β1) β (β€β₯β1) =
((1..^π) βͺ
(β€β₯βπ))) |
83 | 81, 82 | sylbi 216 |
. . . . . . . . . . . . . . . 16
β’ (π β β β
(β€β₯β1) = ((1..^π) βͺ (β€β₯βπ))) |
84 | 80, 83 | eqtrid 2776 |
. . . . . . . . . . . . . . 15
β’ (π β β β β =
((1..^π) βͺ
(β€β₯βπ))) |
85 | 84 | difeq1d 4113 |
. . . . . . . . . . . . . 14
β’ (π β β β (β
β (1..^π)) =
(((1..^π) βͺ
(β€β₯βπ)) β (1..^π))) |
86 | | uncom 4145 |
. . . . . . . . . . . . . . . 16
β’
((1..^π) βͺ
(β€β₯βπ)) = ((β€β₯βπ) βͺ (1..^π)) |
87 | 86 | difeq1i 4110 |
. . . . . . . . . . . . . . 15
β’
(((1..^π) βͺ
(β€β₯βπ)) β (1..^π)) = (((β€β₯βπ) βͺ (1..^π)) β (1..^π)) |
88 | | difun2 4472 |
. . . . . . . . . . . . . . 15
β’
(((β€β₯βπ) βͺ (1..^π)) β (1..^π)) = ((β€β₯βπ) β (1..^π)) |
89 | 87, 88 | eqtri 2752 |
. . . . . . . . . . . . . 14
β’
(((1..^π) βͺ
(β€β₯βπ)) β (1..^π)) = ((β€β₯βπ) β (1..^π)) |
90 | 85, 89 | eqtrdi 2780 |
. . . . . . . . . . . . 13
β’ (π β β β (β
β (1..^π)) =
((β€β₯βπ) β (1..^π))) |
91 | | difss 4123 |
. . . . . . . . . . . . 13
β’
((β€β₯βπ) β (1..^π)) β
(β€β₯βπ) |
92 | 90, 91 | eqsstrdi 4028 |
. . . . . . . . . . . 12
β’ (π β β β (β
β (1..^π)) β
(β€β₯βπ)) |
93 | | ssralv 4042 |
. . . . . . . . . . . 12
β’ ((β
β (1..^π)) β
(β€β₯βπ) β (βπ β (β€β₯βπ) Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β βπ β (β β (1..^π)) Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π)) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . 11
β’ (π β β β
(βπ β
(β€β₯βπ) Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ β (β β (1..^π)) Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π)) |
95 | | impexp 450 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ Β¬
π β (1..^π)) β Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π) β (π β β β (Β¬ π β (1..^π) β Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π))) |
96 | | eldif 3950 |
. . . . . . . . . . . . . . . 16
β’ (π β (β β
(1..^π)) β (π β β β§ Β¬
π β (1..^π))) |
97 | 96 | imbi1i 349 |
. . . . . . . . . . . . . . 15
β’ ((π β (β β
(1..^π)) β Β¬
((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) β ((π β β β§ Β¬ π β (1..^π)) β Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π)) |
98 | | con34b 316 |
. . . . . . . . . . . . . . . 16
β’
((((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β π β (1..^π)) β (Β¬ π β (1..^π) β Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π)) |
99 | 98 | imbi2i 336 |
. . . . . . . . . . . . . . 15
β’ ((π β β β
(((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β π β (1..^π))) β (π β β β (Β¬ π β (1..^π) β Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π))) |
100 | 95, 97, 99 | 3bitr4i 303 |
. . . . . . . . . . . . . 14
β’ ((π β (β β
(1..^π)) β Β¬
((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) β (π β β β (((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β π β (1..^π)))) |
101 | 100 | albii 1813 |
. . . . . . . . . . . . 13
β’
(βπ(π β (β β
(1..^π)) β Β¬
((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) β βπ(π β β β (((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β π β (1..^π)))) |
102 | | df-ral 3054 |
. . . . . . . . . . . . 13
β’
(βπ β
(β β (1..^π))
Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ(π β (β β (1..^π)) β Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π)) |
103 | | vex 3470 |
. . . . . . . . . . . . . . . 16
β’ π β V |
104 | 63 | mptiniseg 6228 |
. . . . . . . . . . . . . . . 16
β’ (π β V β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) = {π β β β£ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π}) |
105 | 103, 104 | ax-mp 5 |
. . . . . . . . . . . . . . 15
β’ (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) = {π β β β£ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π} |
106 | 105 | sseq1i 4002 |
. . . . . . . . . . . . . 14
β’ ((β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β (1..^π) β {π β β β£ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π} β (1..^π)) |
107 | | rabss 4061 |
. . . . . . . . . . . . . 14
β’ ({π β β β£
((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π} β (1..^π) β βπ β β (((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β π β (1..^π))) |
108 | | df-ral 3054 |
. . . . . . . . . . . . . 14
β’
(βπ β
β (((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β π β (1..^π)) β βπ(π β β β (((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β π β (1..^π)))) |
109 | 106, 107,
108 | 3bitri 297 |
. . . . . . . . . . . . 13
β’ ((β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β (1..^π) β βπ(π β β β (((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β π β (1..^π)))) |
110 | 101, 102,
109 | 3bitr4i 303 |
. . . . . . . . . . . 12
β’
(βπ β
(β β (1..^π))
Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β (1..^π)) |
111 | | fzofi 13936 |
. . . . . . . . . . . . 13
β’
(1..^π) β
Fin |
112 | | ssfi 9169 |
. . . . . . . . . . . . 13
β’
(((1..^π) β Fin
β§ (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β (1..^π)) β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
113 | 111, 112 | mpan 687 |
. . . . . . . . . . . 12
β’ ((β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β (1..^π) β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
114 | 110, 113 | sylbi 216 |
. . . . . . . . . . 11
β’
(βπ β
(β β (1..^π))
Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
115 | 94, 114 | syl6 35 |
. . . . . . . . . 10
β’ (π β β β
(βπ β
(β€β₯βπ) Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin)) |
116 | 115 | rexlimiv 3140 |
. . . . . . . . 9
β’
(βπ β
β βπ β
(β€β₯βπ) Β¬ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β (β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
117 | 116 | ralimi 3075 |
. . . . . . . 8
β’
(βπ β
ran (π β β
β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ) Β¬ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
118 | 79, 117 | sylbir 234 |
. . . . . . 7
β’ (Β¬
βπ β ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
119 | | iunfi 9336 |
. . . . . . . 8
β’ ((ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β Fin β§ βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) β βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin) |
120 | 119 | ex 412 |
. . . . . . 7
β’ (ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β Fin β (βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin β βͺ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin)) |
121 | 118, 120 | syl5 34 |
. . . . . 6
β’ (ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β Fin β (Β¬ βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βͺ
π β ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π})))(β‘(π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β Fin)) |
122 | 72, 121 | mt3i 149 |
. . . . 5
β’ (ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β Fin β βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π) |
123 | | ssrexv 4043 |
. . . . 5
β’ (ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β πΌ β (βπ β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ β πΌ βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π)) |
124 | 54, 122, 123 | syl2im 40 |
. . . 4
β’ (π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β Fin β
βπ β πΌ βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π)) |
125 | | unitssre 13473 |
. . . . . . . . . . . 12
β’ (0[,]1)
β β |
126 | | elmapi 8839 |
. . . . . . . . . . . . . 14
β’ (π β ((0[,]1)
βm (1...π))
β π:(1...π)βΆ(0[,]1)) |
127 | 126, 46 | eleq2s 2843 |
. . . . . . . . . . . . 13
β’ (π β πΌ β π:(1...π)βΆ(0[,]1)) |
128 | 127 | ffvelcdmda 7076 |
. . . . . . . . . . . 12
β’ ((π β πΌ β§ π β (1...π)) β (πβπ) β (0[,]1)) |
129 | 125, 128 | sselid 3972 |
. . . . . . . . . . 11
β’ ((π β πΌ β§ π β (1...π)) β (πβπ) β β) |
130 | | nnrp 12982 |
. . . . . . . . . . . 12
β’ (π β β β π β
β+) |
131 | 130 | rpreccld 13023 |
. . . . . . . . . . 11
β’ (π β β β (1 /
π) β
β+) |
132 | | eqid 2724 |
. . . . . . . . . . . . 13
β’ ((abs
β β ) βΎ (β Γ β)) = ((abs β β )
βΎ (β Γ β)) |
133 | 132 | rexmet 24629 |
. . . . . . . . . . . 12
β’ ((abs
β β ) βΎ (β Γ β)) β
(βMetββ) |
134 | | blcntr 24241 |
. . . . . . . . . . . 12
β’ ((((abs
β β ) βΎ (β Γ β)) β
(βMetββ) β§ (πβπ) β β β§ (1 / π) β β+)
β (πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
135 | 133, 134 | mp3an1 1444 |
. . . . . . . . . . 11
β’ (((πβπ) β β β§ (1 / π) β β+)
β (πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
136 | 129, 131,
135 | syl2an 595 |
. . . . . . . . . 10
β’ (((π β πΌ β§ π β (1...π)) β§ π β β) β (πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
137 | 136 | an32s 649 |
. . . . . . . . 9
β’ (((π β πΌ β§ π β β) β§ π β (1...π)) β (πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
138 | | fveq1 6880 |
. . . . . . . . . 10
β’
(((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β (((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) = (πβπ)) |
139 | 138 | eleq1d 2810 |
. . . . . . . . 9
β’
(((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β ((((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β (πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
140 | 137, 139 | syl5ibrcom 246 |
. . . . . . . 8
β’ (((π β πΌ β§ π β β) β§ π β (1...π)) β (((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β (((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
141 | 140 | ralrimdva 3146 |
. . . . . . 7
β’ ((π β πΌ β§ π β β) β (((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) = π β βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
142 | 141 | reximdv 3162 |
. . . . . 6
β’ ((π β πΌ β§ π β β) β (βπ β
(β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
143 | 142 | ralimdva 3159 |
. . . . 5
β’ (π β πΌ β (βπ β β βπ β (β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ β β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
144 | 143 | reximia 3073 |
. . . 4
β’
(βπ β
πΌ βπ β β βπ β
(β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) = π β βπ β πΌ βπ β β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
145 | 124, 144 | syl6 35 |
. . 3
β’ (π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β Fin β
βπ β πΌ βπ β β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
146 | | poimir.r |
. . . . . . . 8
β’ π
=
(βtβ((1...π) Γ {(topGenβran
(,))})) |
147 | 49, 48 | ixpconst 8897 |
. . . . . . . . 9
β’ Xπ β
(1...π)(0[,]1) = ((0[,]1)
βm (1...π)) |
148 | 46, 147 | eqtr4i 2755 |
. . . . . . . 8
β’ πΌ = Xπ β (1...π)(0[,]1) |
149 | 146, 148 | oveq12i 7413 |
. . . . . . 7
β’ (π
βΎt πΌ) =
((βtβ((1...π) Γ {(topGenβran (,))}))
βΎt Xπ β (1...π)(0[,]1)) |
150 | | fzfid 13935 |
. . . . . . . . 9
β’ (β€
β (1...π) β
Fin) |
151 | | retop 24600 |
. . . . . . . . . . 11
β’
(topGenβran (,)) β Top |
152 | 151 | fconst6 6771 |
. . . . . . . . . 10
β’
((1...π) Γ
{(topGenβran (,))}):(1...π)βΆTop |
153 | 152 | a1i 11 |
. . . . . . . . 9
β’ (β€
β ((1...π) Γ
{(topGenβran (,))}):(1...π)βΆTop) |
154 | 48 | a1i 11 |
. . . . . . . . 9
β’
((β€ β§ π
β (1...π)) β
(0[,]1) β V) |
155 | 150, 153,
154 | ptrest 36977 |
. . . . . . . 8
β’ (β€
β ((βtβ((1...π) Γ {(topGenβran (,))}))
βΎt Xπ β (1...π)(0[,]1)) = (βtβ(π β (1...π) β¦ ((((1...π) Γ {(topGenβran
(,))})βπ)
βΎt (0[,]1))))) |
156 | 155 | mptru 1540 |
. . . . . . 7
β’
((βtβ((1...π) Γ {(topGenβran (,))}))
βΎt Xπ β (1...π)(0[,]1)) = (βtβ(π β (1...π) β¦ ((((1...π) Γ {(topGenβran
(,))})βπ)
βΎt (0[,]1)))) |
157 | | fvex 6894 |
. . . . . . . . . . . 12
β’
(topGenβran (,)) β V |
158 | 157 | fvconst2 7197 |
. . . . . . . . . . 11
β’ (π β (1...π) β (((1...π) Γ {(topGenβran
(,))})βπ) =
(topGenβran (,))) |
159 | 158 | oveq1d 7416 |
. . . . . . . . . 10
β’ (π β (1...π) β ((((1...π) Γ {(topGenβran
(,))})βπ)
βΎt (0[,]1)) = ((topGenβran (,)) βΎt
(0[,]1))) |
160 | 159 | mpteq2ia 5241 |
. . . . . . . . 9
β’ (π β (1...π) β¦ ((((1...π) Γ {(topGenβran
(,))})βπ)
βΎt (0[,]1))) = (π β (1...π) β¦ ((topGenβran (,))
βΎt (0[,]1))) |
161 | | fconstmpt 5728 |
. . . . . . . . 9
β’
((1...π) Γ
{((topGenβran (,)) βΎt (0[,]1))}) = (π β (1...π) β¦ ((topGenβran (,))
βΎt (0[,]1))) |
162 | 160, 161 | eqtr4i 2755 |
. . . . . . . 8
β’ (π β (1...π) β¦ ((((1...π) Γ {(topGenβran
(,))})βπ)
βΎt (0[,]1))) = ((1...π) Γ {((topGenβran (,))
βΎt (0[,]1))}) |
163 | 162 | fveq2i 6884 |
. . . . . . 7
β’
(βtβ(π β (1...π) β¦ ((((1...π) Γ {(topGenβran
(,))})βπ)
βΎt (0[,]1)))) = (βtβ((1...π) Γ {((topGenβran
(,)) βΎt (0[,]1))})) |
164 | 149, 156,
163 | 3eqtri 2756 |
. . . . . 6
β’ (π
βΎt πΌ) =
(βtβ((1...π) Γ {((topGenβran (,))
βΎt (0[,]1))})) |
165 | | fzfi 13934 |
. . . . . . 7
β’
(1...π) β
Fin |
166 | | dfii2 24724 |
. . . . . . . . 9
β’ II =
((topGenβran (,)) βΎt (0[,]1)) |
167 | | iicmp 24728 |
. . . . . . . . 9
β’ II β
Comp |
168 | 166, 167 | eqeltrri 2822 |
. . . . . . . 8
β’
((topGenβran (,)) βΎt (0[,]1)) β
Comp |
169 | 168 | fconst6 6771 |
. . . . . . 7
β’
((1...π) Γ
{((topGenβran (,)) βΎt (0[,]1))}):(1...π)βΆComp |
170 | | ptcmpfi 23639 |
. . . . . . 7
β’
(((1...π) β Fin
β§ ((1...π) Γ
{((topGenβran (,)) βΎt (0[,]1))}):(1...π)βΆComp) β
(βtβ((1...π) Γ {((topGenβran (,))
βΎt (0[,]1))})) β Comp) |
171 | 165, 169,
170 | mp2an 689 |
. . . . . 6
β’
(βtβ((1...π) Γ {((topGenβran (,))
βΎt (0[,]1))})) β Comp |
172 | 164, 171 | eqeltri 2821 |
. . . . 5
β’ (π
βΎt πΌ) β Comp |
173 | | rehaus 24637 |
. . . . . . . . . . . 12
β’
(topGenβran (,)) β Haus |
174 | 173 | fconst6 6771 |
. . . . . . . . . . 11
β’
((1...π) Γ
{(topGenβran (,))}):(1...π)βΆHaus |
175 | | pthaus 23464 |
. . . . . . . . . . 11
β’
(((1...π) β Fin
β§ ((1...π) Γ
{(topGenβran (,))}):(1...π)βΆHaus) β
(βtβ((1...π) Γ {(topGenβran (,))})) β
Haus) |
176 | 165, 174,
175 | mp2an 689 |
. . . . . . . . . 10
β’
(βtβ((1...π) Γ {(topGenβran (,))})) β
Haus |
177 | 146, 176 | eqeltri 2821 |
. . . . . . . . 9
β’ π
β Haus |
178 | | haustop 23157 |
. . . . . . . . 9
β’ (π
β Haus β π
β Top) |
179 | 177, 178 | ax-mp 5 |
. . . . . . . 8
β’ π
β Top |
180 | | reex 11197 |
. . . . . . . . . 10
β’ β
β V |
181 | | mapss 8879 |
. . . . . . . . . 10
β’ ((β
β V β§ (0[,]1) β β) β ((0[,]1) βm
(1...π)) β (β
βm (1...π))) |
182 | 180, 125,
181 | mp2an 689 |
. . . . . . . . 9
β’ ((0[,]1)
βm (1...π))
β (β βm (1...π)) |
183 | 46, 182 | eqsstri 4008 |
. . . . . . . 8
β’ πΌ β (β
βm (1...π)) |
184 | | uniretop 24601 |
. . . . . . . . . . 11
β’ β =
βͺ (topGenβran (,)) |
185 | 146, 184 | ptuniconst 23424 |
. . . . . . . . . 10
β’
(((1...π) β Fin
β§ (topGenβran (,)) β Top) β (β βm
(1...π)) = βͺ π
) |
186 | 165, 151,
185 | mp2an 689 |
. . . . . . . . 9
β’ (β
βm (1...π))
= βͺ π
|
187 | 186 | restuni 22988 |
. . . . . . . 8
β’ ((π
β Top β§ πΌ β (β
βm (1...π))) β πΌ = βͺ (π
βΎt πΌ)) |
188 | 179, 183,
187 | mp2an 689 |
. . . . . . 7
β’ πΌ = βͺ
(π
βΎt
πΌ) |
189 | 188 | bwth 23236 |
. . . . . 6
β’ (((π
βΎt πΌ) β Comp β§ ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β πΌ β§ Β¬ ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β Fin) β
βπ β πΌ π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))))) |
190 | 189 | 3expia 1118 |
. . . . 5
β’ (((π
βΎt πΌ) β Comp β§ ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β πΌ) β (Β¬ ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β Fin β
βπ β πΌ π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))))) |
191 | 172, 54, 190 | sylancr 586 |
. . . 4
β’ (π β (Β¬ ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β Fin β βπ β πΌ π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))))) |
192 | | cmptop 23221 |
. . . . . . . . 9
β’ ((π
βΎt πΌ) β Comp β (π
βΎt πΌ) β Top) |
193 | 172, 192 | ax-mp 5 |
. . . . . . . 8
β’ (π
βΎt πΌ) β Top |
194 | 188 | islp3 22972 |
. . . . . . . 8
β’ (((π
βΎt πΌ) β Top β§ ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β πΌ β§ π β πΌ) β (π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β βπ£ β (π
βΎt πΌ)(π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
))) |
195 | 193, 194 | mp3an1 1444 |
. . . . . . 7
β’ ((ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β πΌ β§ π β πΌ) β (π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β βπ£ β (π
βΎt πΌ)(π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
))) |
196 | 54, 195 | sylan 579 |
. . . . . 6
β’ ((π β§ π β πΌ) β (π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β βπ£ β (π
βΎt πΌ)(π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
))) |
197 | | fzfid 13935 |
. . . . . . . . . . . . 13
β’ ((π β πΌ β§ π β β) β (1...π) β Fin) |
198 | 152 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β πΌ β§ π β β) β ((1...π) Γ {(topGenβran
(,))}):(1...π)βΆTop) |
199 | | nnrecre 12251 |
. . . . . . . . . . . . . . . . 17
β’ (π β β β (1 /
π) β
β) |
200 | 199 | rexrd 11261 |
. . . . . . . . . . . . . . . 16
β’ (π β β β (1 /
π) β
β*) |
201 | | eqid 2724 |
. . . . . . . . . . . . . . . . . . 19
β’
(MetOpenβ((abs β β ) βΎ (β Γ
β))) = (MetOpenβ((abs β β ) βΎ (β Γ
β))) |
202 | 132, 201 | tgioo 24634 |
. . . . . . . . . . . . . . . . . 18
β’
(topGenβran (,)) = (MetOpenβ((abs β β ) βΎ
(β Γ β))) |
203 | 202 | blopn 24331 |
. . . . . . . . . . . . . . . . 17
β’ ((((abs
β β ) βΎ (β Γ β)) β
(βMetββ) β§ (πβπ) β β β§ (1 / π) β β*)
β ((πβπ)(ballβ((abs β
β ) βΎ (β Γ β)))(1 / π)) β (topGenβran
(,))) |
204 | 133, 203 | mp3an1 1444 |
. . . . . . . . . . . . . . . 16
β’ (((πβπ) β β β§ (1 / π) β β*)
β ((πβπ)(ballβ((abs β
β ) βΎ (β Γ β)))(1 / π)) β (topGenβran
(,))) |
205 | 129, 200,
204 | syl2an 595 |
. . . . . . . . . . . . . . 15
β’ (((π β πΌ β§ π β (1...π)) β§ π β β) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β (topGenβran
(,))) |
206 | 205 | an32s 649 |
. . . . . . . . . . . . . 14
β’ (((π β πΌ β§ π β β) β§ π β (1...π)) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β (topGenβran
(,))) |
207 | 157 | fvconst2 7197 |
. . . . . . . . . . . . . . 15
β’ (π β (1...π) β (((1...π) Γ {(topGenβran
(,))})βπ) =
(topGenβran (,))) |
208 | 207 | adantl 481 |
. . . . . . . . . . . . . 14
β’ (((π β πΌ β§ π β β) β§ π β (1...π)) β (((1...π) Γ {(topGenβran
(,))})βπ) =
(topGenβran (,))) |
209 | 206, 208 | eleqtrrd 2828 |
. . . . . . . . . . . . 13
β’ (((π β πΌ β§ π β β) β§ π β (1...π)) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β (((1...π) Γ {(topGenβran
(,))})βπ)) |
210 | | noel 4322 |
. . . . . . . . . . . . . . . 16
β’ Β¬
π β
β
|
211 | | difid 4362 |
. . . . . . . . . . . . . . . . 17
β’
((1...π) β
(1...π)) =
β
|
212 | 211 | eleq2i 2817 |
. . . . . . . . . . . . . . . 16
β’ (π β ((1...π) β (1...π)) β π β β
) |
213 | 210, 212 | mtbir 323 |
. . . . . . . . . . . . . . 15
β’ Β¬
π β ((1...π) β (1...π)) |
214 | 213 | pm2.21i 119 |
. . . . . . . . . . . . . 14
β’ (π β ((1...π) β (1...π)) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) = βͺ
(((1...π) Γ
{(topGenβran (,))})βπ)) |
215 | 214 | adantl 481 |
. . . . . . . . . . . . 13
β’ (((π β πΌ β§ π β β) β§ π β ((1...π) β (1...π))) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) = βͺ
(((1...π) Γ
{(topGenβran (,))})βπ)) |
216 | 197, 198,
197, 209, 215 | ptopn 23409 |
. . . . . . . . . . . 12
β’ ((π β πΌ β§ π β β) β Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β
(βtβ((1...π) Γ {(topGenβran
(,))}))) |
217 | 216, 146 | eleqtrrdi 2836 |
. . . . . . . . . . 11
β’ ((π β πΌ β§ π β β) β Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β π
) |
218 | | ovex 7434 |
. . . . . . . . . . . . 13
β’ ((0[,]1)
βm (1...π))
β V |
219 | 46, 218 | eqeltri 2821 |
. . . . . . . . . . . 12
β’ πΌ β V |
220 | | elrestr 17373 |
. . . . . . . . . . . 12
β’ ((π
β Haus β§ πΌ β V β§ Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β π
) β (Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (π
βΎt πΌ)) |
221 | 177, 219,
220 | mp3an12 1447 |
. . . . . . . . . . 11
β’ (Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β π
β (Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (π
βΎt πΌ)) |
222 | 217, 221 | syl 17 |
. . . . . . . . . 10
β’ ((π β πΌ β§ π β β) β (Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (π
βΎt πΌ)) |
223 | | difss 4123 |
. . . . . . . . . . . . 13
β’ (((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β {π}) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) |
224 | | imassrn 6060 |
. . . . . . . . . . . . 13
β’ ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) |
225 | 223, 224 | sstri 3983 |
. . . . . . . . . . . 12
β’ (((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β {π}) β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) |
226 | 225, 54 | sstrid 3985 |
. . . . . . . . . . 11
β’ (π β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β πΌ) |
227 | | haust1 23178 |
. . . . . . . . . . . . . 14
β’ (π
β Haus β π
β Fre) |
228 | 177, 227 | ax-mp 5 |
. . . . . . . . . . . . 13
β’ π
β Fre |
229 | | restt1 23193 |
. . . . . . . . . . . . 13
β’ ((π
β Fre β§ πΌ β V) β (π
βΎt πΌ) β Fre) |
230 | 228, 219,
229 | mp2an 689 |
. . . . . . . . . . . 12
β’ (π
βΎt πΌ) β Fre |
231 | | funmpt 6576 |
. . . . . . . . . . . . . 14
β’ Fun
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) |
232 | | imafi 9171 |
. . . . . . . . . . . . . 14
β’ ((Fun
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β§ (1..^π) β Fin) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β Fin) |
233 | 231, 111,
232 | mp2an 689 |
. . . . . . . . . . . . 13
β’ ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β Fin |
234 | | diffi 9175 |
. . . . . . . . . . . . 13
β’ (((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β Fin β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β Fin) |
235 | 233, 234 | ax-mp 5 |
. . . . . . . . . . . 12
β’ (((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β {π}) β Fin |
236 | 188 | t1ficld 23153 |
. . . . . . . . . . . 12
β’ (((π
βΎt πΌ) β Fre β§ (((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β {π}) β πΌ β§ (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β Fin) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β (Clsdβ(π
βΎt πΌ))) |
237 | 230, 235,
236 | mp3an13 1448 |
. . . . . . . . . . 11
β’ ((((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β {π}) β πΌ β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β (Clsdβ(π
βΎt πΌ))) |
238 | 226, 237 | syl 17 |
. . . . . . . . . 10
β’ (π β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β (Clsdβ(π
βΎt πΌ))) |
239 | 188 | difopn 22860 |
. . . . . . . . . 10
β’ (((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (π
βΎt πΌ) β§ (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β (Clsdβ(π
βΎt πΌ))) β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π
βΎt πΌ)) |
240 | 222, 238,
239 | syl2anr 596 |
. . . . . . . . 9
β’ ((π β§ (π β πΌ β§ π β β)) β ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π
βΎt πΌ)) |
241 | 240 | anassrs 467 |
. . . . . . . 8
β’ (((π β§ π β πΌ) β§ π β β) β ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π
βΎt πΌ)) |
242 | | eleq2 2814 |
. . . . . . . . . . 11
β’ (π£ = ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π β π£ β π β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})))) |
243 | | ineq1 4197 |
. . . . . . . . . . . 12
β’ (π£ = ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) = (((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}))) |
244 | 243 | neeq1d 2992 |
. . . . . . . . . . 11
β’ (π£ = ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β ((π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
β (((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
)) |
245 | 242, 244 | imbi12d 344 |
. . . . . . . . . 10
β’ (π£ = ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β ((π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
) β (π β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
))) |
246 | 245 | rspcva 3602 |
. . . . . . . . 9
β’ ((((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π
βΎt πΌ) β§ βπ£ β (π
βΎt πΌ)(π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
)) β (π β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
)) |
247 | 127 | ffnd 6708 |
. . . . . . . . . . . . . . 15
β’ (π β πΌ β π Fn (1...π)) |
248 | 247 | adantr 480 |
. . . . . . . . . . . . . 14
β’ ((π β πΌ β§ π β β) β π Fn (1...π)) |
249 | 137 | ralrimiva 3138 |
. . . . . . . . . . . . . 14
β’ ((π β πΌ β§ π β β) β βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
250 | 103 | elixp 8894 |
. . . . . . . . . . . . . 14
β’ (π β Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β (π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
251 | 248, 249,
250 | sylanbrc 582 |
. . . . . . . . . . . . 13
β’ ((π β πΌ β§ π β β) β π β Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
252 | | simpl 482 |
. . . . . . . . . . . . 13
β’ ((π β πΌ β§ π β β) β π β πΌ) |
253 | 251, 252 | elind 4186 |
. . . . . . . . . . . 12
β’ ((π β πΌ β§ π β β) β π β (Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ)) |
254 | | neldifsnd 4788 |
. . . . . . . . . . . 12
β’ ((π β πΌ β§ π β β) β Β¬ π β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) |
255 | 253, 254 | eldifd 3951 |
. . . . . . . . . . 11
β’ ((π β πΌ β§ π β β) β π β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}))) |
256 | 255 | adantll 711 |
. . . . . . . . . 10
β’ (((π β§ π β πΌ) β§ π β β) β π β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}))) |
257 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
β’ (((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
258 | 257 | anim1i 614 |
. . . . . . . . . . . . . . . 16
β’ ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β (βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)))) |
259 | | simpl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π}) β π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) |
260 | 258, 259 | anim12i 612 |
. . . . . . . . . . . . . . 15
β’
(((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) β ((βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))))) |
261 | | elin 3956 |
. . . . . . . . . . . . . . . 16
β’ (π β (((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β (π β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β§ π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}))) |
262 | | andir 1005 |
. . . . . . . . . . . . . . . . 17
β’
((((((π Fn
(1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β¨ (((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π})) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) β (((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) β¨ ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π}) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})))) |
263 | | eldif 3950 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π β (Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β§ Β¬ π β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}))) |
264 | | elin 3956 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (π β Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ π β πΌ)) |
265 | | vex 3470 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ π β V |
266 | 265 | elixp 8894 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β (π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
267 | 266 | anbi1i 623 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ π β πΌ) β ((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ)) |
268 | 264, 267 | bitri 275 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β ((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ)) |
269 | | ianor 978 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (Β¬
(π β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β§ Β¬ π β {π}) β (Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β¨ Β¬ Β¬ π β {π})) |
270 | | eldif 3950 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π}) β (π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β§ Β¬ π β {π})) |
271 | 269, 270 | xchnxbir 333 |
. . . . . . . . . . . . . . . . . . . 20
β’ (Β¬
π β (((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β {π}) β (Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β¨ Β¬ Β¬ π β {π})) |
272 | 268, 271 | anbi12i 626 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β (Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β§ Β¬ π β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ (Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β¨ Β¬ Β¬ π β {π}))) |
273 | | andi 1004 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ (Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β¨ Β¬ Β¬ π β {π})) β ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β¨ (((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π}))) |
274 | 263, 272,
273 | 3bitri 297 |
. . . . . . . . . . . . . . . . . 18
β’ (π β ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β¨ (((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π}))) |
275 | | eldif 3950 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}) β (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) |
276 | 274, 275 | anbi12i 626 |
. . . . . . . . . . . . . . . . 17
β’ ((π β ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β§ π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β (((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β¨ (((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π})) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π}))) |
277 | | pm3.24 402 |
. . . . . . . . . . . . . . . . . . 19
β’ Β¬
(Β¬ π β {π} β§ Β¬ Β¬ π β {π}) |
278 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π}) β Β¬ Β¬ π β {π}) |
279 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π}) β Β¬ π β {π}) |
280 | 278, 279 | anim12ci 613 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π}) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) β (Β¬ π β {π} β§ Β¬ Β¬ π β {π})) |
281 | 277, 280 | mto 196 |
. . . . . . . . . . . . . . . . . 18
β’ Β¬
((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π}) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) |
282 | 281 | biorfi 935 |
. . . . . . . . . . . . . . . . 17
β’
(((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) β (((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})) β¨ ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ Β¬ π β {π}) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π})))) |
283 | 262, 276,
282 | 3bitr4i 303 |
. . . . . . . . . . . . . . . 16
β’ ((π β ((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β§ π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π}))) |
284 | 261, 283 | bitri 275 |
. . . . . . . . . . . . . . 15
β’ (π β (((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β ((((π Fn (1...π) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β§ π β πΌ) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β {π}))) |
285 | | ancom 460 |
. . . . . . . . . . . . . . . 16
β’ (((Β¬
π β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β (βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ (Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))))) |
286 | | anass 468 |
. . . . . . . . . . . . . . . 16
β’
(((βπ β
(1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β (βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ (Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))))) |
287 | 285, 286 | bitr4i 278 |
. . . . . . . . . . . . . . 15
β’ (((Β¬
π β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β ((βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))))) |
288 | 260, 284,
287 | 3imtr4i 292 |
. . . . . . . . . . . . . 14
β’ (π β (((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β ((Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
289 | | ancom 460 |
. . . . . . . . . . . . . . . . 17
β’ ((Β¬
π β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)))) |
290 | | eldif 3950 |
. . . . . . . . . . . . . . . . 17
β’ (π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π))) β (π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ Β¬ π β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)))) |
291 | 289, 290 | bitr4i 278 |
. . . . . . . . . . . . . . . 16
β’ ((Β¬
π β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)))) |
292 | | imadmrn 6059 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β dom (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) = ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) |
293 | 62, 63 | dmmpti 6684 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ dom
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) = β |
294 | 293 | imaeq2i 6047 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β dom (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) = ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β
β) |
295 | 292, 294 | eqtr3i 2754 |
. . . . . . . . . . . . . . . . . . . 20
β’ ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) = ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β
β) |
296 | 295 | difeq1i 4110 |
. . . . . . . . . . . . . . . . . . 19
β’ (ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) = (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β β) β
((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π))) |
297 | | imadifss 36953 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β β) β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π))) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (β β
(1..^π))) |
298 | 296, 297 | eqsstri 4008 |
. . . . . . . . . . . . . . . . . 18
β’ (ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (β β
(1..^π))) |
299 | | imass2 6091 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((β
β (1..^π)) β
(β€β₯βπ) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (β β
(1..^π))) β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β
(β€β₯βπ))) |
300 | 92, 299 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (β β (1..^π))) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β
(β€β₯βπ))) |
301 | | df-ima 5679 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β
(β€β₯βπ)) = ran ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) βΎ
(β€β₯βπ)) |
302 | | uznnssnn 12876 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β β β
(β€β₯βπ) β β) |
303 | 302 | resmptd 6030 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β β β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) βΎ
(β€β₯βπ)) = (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) |
304 | 303 | rneqd 5927 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β β ran
((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) βΎ
(β€β₯βπ)) = ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) |
305 | 301, 304 | eqtrid 2776 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β
(β€β₯βπ)) = ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) |
306 | 300, 305 | sseqtrd 4014 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (β β (1..^π))) β ran (π β
(β€β₯βπ) β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})))) |
307 | 298, 306 | sstrid 3985 |
. . . . . . . . . . . . . . . . 17
β’ (π β β β (ran
(π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β ((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π))) β ran (π β
(β€β₯βπ) β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})))) |
308 | 307 | sseld 3973 |
. . . . . . . . . . . . . . . 16
β’ (π β β β (π β (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π))) β π β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))))) |
309 | 291, 308 | biimtrid 241 |
. . . . . . . . . . . . . . 15
β’ (π β β β ((Β¬
π β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β π β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))))) |
310 | 309 | anim1d 610 |
. . . . . . . . . . . . . 14
β’ (π β β β (((Β¬
π β ((π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β (1..^π)) β§ π β ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) β (π β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))))) |
311 | 288, 310 | syl5 34 |
. . . . . . . . . . . . 13
β’ (π β β β (π β (((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β (π β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))))) |
312 | 311 | eximdv 1912 |
. . . . . . . . . . . 12
β’ (π β β β
(βπ π β (((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β βπ(π β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))))) |
313 | | n0 4338 |
. . . . . . . . . . . 12
β’ ((((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
β βπ π β (((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π}))) |
314 | 62 | rgenw 3057 |
. . . . . . . . . . . . . 14
β’
βπ β
(β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) β V |
315 | | eqid 2724 |
. . . . . . . . . . . . . . 15
β’ (π β
(β€β₯βπ) β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) = (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) |
316 | | fveq1 6880 |
. . . . . . . . . . . . . . . . 17
β’ (π = ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) β (πβπ) = (((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ)) |
317 | 316 | eleq1d 2810 |
. . . . . . . . . . . . . . . 16
β’ (π = ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) β ((πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β (((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
318 | 317 | ralbidv 3169 |
. . . . . . . . . . . . . . 15
β’ (π = ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})) β (βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
319 | 315, 318 | rexrnmptw 7086 |
. . . . . . . . . . . . . 14
β’
(βπ β
(β€β₯βπ)((1st β(πΊβπ)) βf / ((1...π) Γ {π})) β V β (βπ β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
320 | 314, 319 | ax-mp 5 |
. . . . . . . . . . . . 13
β’
(βπ β ran
(π β
(β€β₯βπ) β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})))βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
321 | | df-rex 3063 |
. . . . . . . . . . . . 13
β’
(βπ β ran
(π β
(β€β₯βπ) β¦ ((1st β(πΊβπ)) βf / ((1...π) Γ {π})))βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β βπ(π β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
322 | 320, 321 | bitr3i 277 |
. . . . . . . . . . . 12
β’
(βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β βπ(π β ran (π β (β€β₯βπ) β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β§ βπ β (1...π)(πβπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
323 | 312, 313,
322 | 3imtr4g 296 |
. . . . . . . . . . 11
β’ (π β β β ((((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
324 | 323 | adantl 481 |
. . . . . . . . . 10
β’ (((π β§ π β πΌ) β§ π β β) β ((((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
325 | 256, 324 | embantd 59 |
. . . . . . . . 9
β’ (((π β§ π β πΌ) β§ π β β) β ((π β ((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (((Xπ β (1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
) β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
326 | 246, 325 | syl5 34 |
. . . . . . . 8
β’ (((π β§ π β πΌ) β§ π β β) β ((((Xπ β
(1...π)((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β© πΌ) β (((π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β (1..^π)) β {π})) β (π
βΎt πΌ) β§ βπ£ β (π
βΎt πΌ)(π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
)) β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
327 | 241, 326 | mpand 692 |
. . . . . . 7
β’ (((π β§ π β πΌ) β§ π β β) β (βπ£ β (π
βΎt πΌ)(π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
) β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
328 | 327 | ralrimdva 3146 |
. . . . . 6
β’ ((π β§ π β πΌ) β (βπ£ β (π
βΎt πΌ)(π β π£ β (π£ β© (ran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π}))) β {π})) β β
) β βπ β β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
329 | 196, 328 | sylbid 239 |
. . . . 5
β’ ((π β§ π β πΌ) β (π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β βπ β β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
330 | 329 | reximdva 3160 |
. . . 4
β’ (π β (βπ β πΌ π β ((limPtβ(π
βΎt πΌ))βran (π β β β¦ ((1st
β(πΊβπ)) βf /
((1...π) Γ {π})))) β βπ β πΌ βπ β β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
331 | 191, 330 | syld 47 |
. . 3
β’ (π β (Β¬ ran (π β β β¦
((1st β(πΊβπ)) βf / ((1...π) Γ {π}))) β Fin β βπ β πΌ βπ β β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)))) |
332 | 145, 331 | pm2.61d 179 |
. 2
β’ (π β βπ β πΌ βπ β β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π))) |
333 | | poimir.0 |
. . . 4
β’ (π β π β β) |
334 | | poimir.1 |
. . . 4
β’ (π β πΉ β ((π
βΎt πΌ) Cn π
)) |
335 | | poimirlem30.x |
. . . 4
β’ π = ((πΉβ(((1st β(πΊβπ)) βf + ((((2nd
β(πΊβπ)) β (1...π)) Γ {1}) βͺ
(((2nd β(πΊβπ)) β ((π + 1)...π)) Γ {0}))) βf /
((1...π) Γ {π})))βπ) |
336 | | poimirlem30.4 |
. . . 4
β’ ((π β§ (π β β β§ π β (1...π) β§ π β { β€ , β‘ β€ })) β βπ β (0...π)0ππ) |
337 | 333, 46, 146, 334, 335, 32, 37, 336 | poimirlem29 37007 |
. . 3
β’ (π β (βπ β β βπ β
(β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β βπ β (1...π)βπ£ β (π
βΎt πΌ)(π β π£ β βπ β { β€ , β‘ β€ }βπ§ β π£ 0π((πΉβπ§)βπ)))) |
338 | 337 | reximdv 3162 |
. 2
β’ (π β (βπ β πΌ βπ β β βπ β (β€β₯βπ)βπ β (1...π)(((1st β(πΊβπ)) βf / ((1...π) Γ {π}))βπ) β ((πβπ)(ballβ((abs β β ) βΎ
(β Γ β)))(1 / π)) β βπ β πΌ βπ β (1...π)βπ£ β (π
βΎt πΌ)(π β π£ β βπ β { β€ , β‘ β€ }βπ§ β π£ 0π((πΉβπ§)βπ)))) |
339 | 332, 338 | mpd 15 |
1
β’ (π β βπ β πΌ βπ β (1...π)βπ£ β (π
βΎt πΌ)(π β π£ β βπ β { β€ , β‘ β€ }βπ§ β π£ 0π((πΉβπ§)βπ))) |