Step | Hyp | Ref
| Expression |
1 | | scutcl 33996 |
. . . . . . . 8
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No
) |
2 | 1 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐴 |s 𝐵) ∈ No
) |
3 | | scutcl 33996 |
. . . . . . . 8
⊢ (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No
) |
4 | 3 | ad3antlr 728 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐶 |s 𝐷) ∈ No
) |
5 | | ssltss2 33984 |
. . . . . . . . 9
⊢ (𝐶 <<s 𝐷 → 𝐷 ⊆ No
) |
6 | 5 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐷 ⊆ No
) |
7 | 6 | sselda 3921 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ No
) |
8 | | simplr 766 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) |
9 | | scutcut 33995 |
. . . . . . . . . . . 12
⊢ (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No
∧ 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷)) |
10 | 9 | simp3d 1143 |
. . . . . . . . . . 11
⊢ (𝐶 <<s 𝐷 → {(𝐶 |s 𝐷)} <<s 𝐷) |
11 | 10 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → {(𝐶 |s 𝐷)} <<s 𝐷) |
12 | | ssltsep 33985 |
. . . . . . . . . 10
⊢ ({(𝐶 |s 𝐷)} <<s 𝐷 → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑) |
14 | | ovex 7308 |
. . . . . . . . . 10
⊢ (𝐶 |s 𝐷) ∈ V |
15 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐶 |s 𝐷) → (𝑎 <s 𝑑 ↔ (𝐶 |s 𝐷) <s 𝑑)) |
16 | 15 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐶 |s 𝐷) → (∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐶 |s 𝐷) <s 𝑑)) |
17 | 14, 16 | ralsn 4617 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
{(𝐶 |s 𝐷)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐶 |s 𝐷) <s 𝑑) |
18 | 13, 17 | sylib 217 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑑 ∈ 𝐷 (𝐶 |s 𝐷) <s 𝑑) |
19 | 18 | r19.21bi 3134 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐶 |s 𝐷) <s 𝑑) |
20 | 2, 4, 7, 8, 19 | slelttrd 33964 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐴 |s 𝐵) <s 𝑑) |
21 | 20 | ralrimiva 3103 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑) |
22 | | ssltss1 33983 |
. . . . . . . . . 10
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No
) |
23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → 𝐴 ⊆ No
) |
24 | 23 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐴 ⊆ No
) |
25 | 24 | sselda 3921 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ No
) |
26 | 1 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝐴 |s 𝐵) ∈ No
) |
27 | 3 | ad3antlr 728 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝐶 |s 𝐷) ∈ No
) |
28 | | scutcut 33995 |
. . . . . . . . . . . . 13
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
29 | 28 | simp2d 1142 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
30 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)}) |
31 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐴 <<s {(𝐴 |s 𝐵)}) |
32 | | ssltsep 33985 |
. . . . . . . . . 10
⊢ (𝐴 <<s {(𝐴 |s 𝐵)} → ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑) |
33 | 31, 32 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑) |
34 | 33 | r19.21bi 3134 |
. . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → ∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑) |
35 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝐴 |s 𝐵) ∈ V |
36 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑑 = (𝐴 |s 𝐵) → (𝑎 <s 𝑑 ↔ 𝑎 <s (𝐴 |s 𝐵))) |
37 | 35, 36 | ralsn 4617 |
. . . . . . . 8
⊢
(∀𝑑 ∈
{(𝐴 |s 𝐵)}𝑎 <s 𝑑 ↔ 𝑎 <s (𝐴 |s 𝐵)) |
38 | 34, 37 | sylib 217 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s (𝐴 |s 𝐵)) |
39 | | simplr 766 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) |
40 | 25, 26, 27, 38, 39 | sltletrd 33963 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s (𝐶 |s 𝐷)) |
41 | 40 | ralrimiva 3103 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)) |
42 | 21, 41 | jca 512 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) |
43 | | bdayelon 33971 |
. . . . . . 7
⊢ ( bday ‘(𝐴 |s 𝐵)) ∈ On |
44 | 43 | onordi 6371 |
. . . . . 6
⊢ Ord
( bday ‘(𝐴 |s 𝐵)) |
45 | | ordn2lp 6286 |
. . . . . 6
⊢ (Ord
( bday ‘(𝐴 |s 𝐵)) → ¬ ((
bday ‘(𝐴 |s
𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))) |
46 | 44, 45 | ax-mp 5 |
. . . . 5
⊢ ¬
(( bday ‘(𝐴 |s 𝐵)) ∈ ( bday
‘(𝐶 |s 𝐷)) ∧ (
bday ‘(𝐶 |s
𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))) |
47 | 3 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No
) |
48 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → (𝐴 |s 𝐵) ∈ No
) |
49 | 48 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No
) |
50 | | sltnle 33956 |
. . . . . . 7
⊢ (((𝐶 |s 𝐷) ∈ No
∧ (𝐴 |s 𝐵) ∈
No ) → ((𝐶 |s
𝐷) <s (𝐴 |s 𝐵) ↔ ¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))) |
51 | 47, 49, 50 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) ↔ ¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))) |
52 | 3 | ad3antlr 728 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 |s 𝐷) ∈ No
) |
53 | | ssltex1 33981 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
54 | 53 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 ∈ V) |
55 | | snex 5354 |
. . . . . . . . . . 11
⊢ {(𝐶 |s 𝐷)} ∈ V |
56 | 54, 55 | jctir 521 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 ∈ V ∧ {(𝐶 |s 𝐷)} ∈ V)) |
57 | 22 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 ⊆ No
) |
58 | 52 | snssd 4742 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐶 |s 𝐷)} ⊆ No
) |
59 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)) |
60 | | breq2 5078 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = (𝐶 |s 𝐷) → (𝑎 <s 𝑑 ↔ 𝑎 <s (𝐶 |s 𝐷))) |
61 | 14, 60 | ralsn 4617 |
. . . . . . . . . . . . 13
⊢
(∀𝑑 ∈
{(𝐶 |s 𝐷)}𝑎 <s 𝑑 ↔ 𝑎 <s (𝐶 |s 𝐷)) |
62 | 61 | ralbii 3092 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑 ↔ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)) |
63 | 59, 62 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑) |
64 | 57, 58, 63 | 3jca 1127 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 ⊆ No
∧ {(𝐶 |s 𝐷)} ⊆ No ∧ ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑)) |
65 | | brsslt 33980 |
. . . . . . . . . 10
⊢ (𝐴 <<s {(𝐶 |s 𝐷)} ↔ ((𝐴 ∈ V ∧ {(𝐶 |s 𝐷)} ∈ V) ∧ (𝐴 ⊆ No
∧ {(𝐶 |s 𝐷)} ⊆ No ∧ ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑))) |
66 | 56, 64, 65 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 <<s {(𝐶 |s 𝐷)}) |
67 | | ssltex2 33982 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) |
68 | 67 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐵 ∈ V) |
69 | 68, 55 | jctil 520 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐶 |s 𝐷)} ∈ V ∧ 𝐵 ∈ V)) |
70 | | ssltss2 33984 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No
) |
71 | 70 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐵 ⊆ No
) |
72 | 52 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐶 |s 𝐷) ∈ No
) |
73 | 48 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐴 |s 𝐵) ∈ No
) |
74 | 71 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ No
) |
75 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) |
76 | 28 | simp3d 1143 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 <<s 𝐵 → {(𝐴 |s 𝐵)} <<s 𝐵) |
77 | 76 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} <<s 𝐵) |
78 | | ssltsep 33985 |
. . . . . . . . . . . . . . . . 17
⊢ ({(𝐴 |s 𝐵)} <<s 𝐵 → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) |
80 | | breq1 5077 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝐴 |s 𝐵) → (𝑎 <s 𝑏 ↔ (𝐴 |s 𝐵) <s 𝑏)) |
81 | 80 | ralbidv 3112 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝐴 |s 𝐵) → (∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐴 |s 𝐵) <s 𝑏)) |
82 | 35, 81 | ralsn 4617 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑎 ∈
{(𝐴 |s 𝐵)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐴 |s 𝐵) <s 𝑏) |
83 | 79, 82 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑏 ∈ 𝐵 (𝐴 |s 𝐵) <s 𝑏) |
84 | 83 | r19.21bi 3134 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐴 |s 𝐵) <s 𝑏) |
85 | 72, 73, 74, 75, 84 | slttrd 33962 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐶 |s 𝐷) <s 𝑏) |
86 | 85 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑏 ∈ 𝐵 (𝐶 |s 𝐷) <s 𝑏) |
87 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝐶 |s 𝐷) → (𝑎 <s 𝑏 ↔ (𝐶 |s 𝐷) <s 𝑏)) |
88 | 87 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝐶 |s 𝐷) → (∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐶 |s 𝐷) <s 𝑏)) |
89 | 14, 88 | ralsn 4617 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
{(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐶 |s 𝐷) <s 𝑏) |
90 | 86, 89 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) |
91 | 58, 71, 90 | 3jca 1127 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐶 |s 𝐷)} ⊆ No
∧ 𝐵 ⊆ No ∧ ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏)) |
92 | | brsslt 33980 |
. . . . . . . . . 10
⊢ ({(𝐶 |s 𝐷)} <<s 𝐵 ↔ (({(𝐶 |s 𝐷)} ∈ V ∧ 𝐵 ∈ V) ∧ ({(𝐶 |s 𝐷)} ⊆ No
∧ 𝐵 ⊆ No ∧ ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏))) |
93 | 69, 91, 92 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐶 |s 𝐷)} <<s 𝐵) |
94 | | sltirr 33949 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 |s 𝐵) ∈ No
→ ¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵)) |
95 | 49, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵)) |
96 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → ((𝐴 |s 𝐵) <s (𝐴 |s 𝐵) ↔ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))) |
97 | 96 | notbid 318 |
. . . . . . . . . . . . 13
⊢ ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → (¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵) ↔ ¬ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))) |
98 | 95, 97 | syl5ibcom 244 |
. . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → ¬ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))) |
99 | 98 | necon2ad 2958 |
. . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) → (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷))) |
100 | 99 | imp 407 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷)) |
101 | 100 | necomd 2999 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 |s 𝐷) ≠ (𝐴 |s 𝐵)) |
102 | | scutbdaylt 34012 |
. . . . . . . . 9
⊢ (((𝐶 |s 𝐷) ∈ No
∧ (𝐴 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐵) ∧ (𝐶 |s 𝐷) ≠ (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷))) |
103 | 52, 66, 93, 101, 102 | syl121anc 1374 |
. . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷))) |
104 | 1 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 |s 𝐵) ∈ No
) |
105 | | ssltex1 33981 |
. . . . . . . . . . . 12
⊢ (𝐶 <<s 𝐷 → 𝐶 ∈ V) |
106 | 105 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 ∈ V) |
107 | | snex 5354 |
. . . . . . . . . . 11
⊢ {(𝐴 |s 𝐵)} ∈ V |
108 | 106, 107 | jctir 521 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 ∈ V ∧ {(𝐴 |s 𝐵)} ∈ V)) |
109 | | ssltss1 33983 |
. . . . . . . . . . . 12
⊢ (𝐶 <<s 𝐷 → 𝐶 ⊆ No
) |
110 | 109 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 ⊆ No
) |
111 | 104 | snssd 4742 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} ⊆ No
) |
112 | 110 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ No
) |
113 | 52 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝐶 |s 𝐷) ∈ No
) |
114 | 48 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝐴 |s 𝐵) ∈ No
) |
115 | 9 | simp2d 1142 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 <<s 𝐷 → 𝐶 <<s {(𝐶 |s 𝐷)}) |
116 | 115 | ad3antlr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 <<s {(𝐶 |s 𝐷)}) |
117 | | ssltsep 33985 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 <<s {(𝐶 |s 𝐷)} → ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑) |
118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑) |
119 | 118 | r19.21bi 3134 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑) |
120 | | breq2 5078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝐶 |s 𝐷) → (𝑐 <s 𝑑 ↔ 𝑐 <s (𝐶 |s 𝐷))) |
121 | 14, 120 | ralsn 4617 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
{(𝐶 |s 𝐷)}𝑐 <s 𝑑 ↔ 𝑐 <s (𝐶 |s 𝐷)) |
122 | 119, 121 | sylib 217 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → 𝑐 <s (𝐶 |s 𝐷)) |
123 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) |
124 | 112, 113,
114, 122, 123 | slttrd 33962 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → 𝑐 <s (𝐴 |s 𝐵)) |
125 | | breq2 5078 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝐴 |s 𝐵) → (𝑐 <s 𝑎 ↔ 𝑐 <s (𝐴 |s 𝐵))) |
126 | 35, 125 | ralsn 4617 |
. . . . . . . . . . . . 13
⊢
(∀𝑎 ∈
{(𝐴 |s 𝐵)}𝑐 <s 𝑎 ↔ 𝑐 <s (𝐴 |s 𝐵)) |
127 | 124, 126 | sylibr 233 |
. . . . . . . . . . . 12
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎) |
128 | 127 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑐 ∈ 𝐶 ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎) |
129 | 110, 111,
128 | 3jca 1127 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 ⊆ No
∧ {(𝐴 |s 𝐵)} ⊆ No ∧ ∀𝑐 ∈ 𝐶 ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎)) |
130 | | brsslt 33980 |
. . . . . . . . . 10
⊢ (𝐶 <<s {(𝐴 |s 𝐵)} ↔ ((𝐶 ∈ V ∧ {(𝐴 |s 𝐵)} ∈ V) ∧ (𝐶 ⊆ No
∧ {(𝐴 |s 𝐵)} ⊆ No ∧ ∀𝑐 ∈ 𝐶 ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎))) |
131 | 108, 129,
130 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 <<s {(𝐴 |s 𝐵)}) |
132 | | ssltex2 33982 |
. . . . . . . . . . . 12
⊢ (𝐶 <<s 𝐷 → 𝐷 ∈ V) |
133 | 132 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐷 ∈ V) |
134 | 133, 107 | jctil 520 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐴 |s 𝐵)} ∈ V ∧ 𝐷 ∈ V)) |
135 | 5 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐷 ⊆ No
) |
136 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑) |
137 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝐴 |s 𝐵) → (𝑎 <s 𝑑 ↔ (𝐴 |s 𝐵) <s 𝑑)) |
138 | 137 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝐴 |s 𝐵) → (∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑)) |
139 | 35, 138 | ralsn 4617 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
{(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑) |
140 | 136, 139 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑) |
141 | 111, 135,
140 | 3jca 1127 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐴 |s 𝐵)} ⊆ No
∧ 𝐷 ⊆ No ∧ ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑)) |
142 | | brsslt 33980 |
. . . . . . . . . 10
⊢ ({(𝐴 |s 𝐵)} <<s 𝐷 ↔ (({(𝐴 |s 𝐵)} ∈ V ∧ 𝐷 ∈ V) ∧ ({(𝐴 |s 𝐵)} ⊆ No
∧ 𝐷 ⊆ No ∧ ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑))) |
143 | 134, 141,
142 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} <<s 𝐷) |
144 | | scutbdaylt 34012 |
. . . . . . . . 9
⊢ (((𝐴 |s 𝐵) ∈ No
∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷)) → ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))) |
145 | 104, 131,
143, 100, 144 | syl121anc 1374 |
. . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))) |
146 | 103, 145 | jca 512 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))) |
147 | 146 | ex 413 |
. . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) → (( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))))) |
148 | 51, 147 | sylbird 259 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) → (( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))))) |
149 | 46, 148 | mt3i 149 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) |
150 | 42, 149 | impbida 798 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → ((𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) ↔ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)))) |
151 | | breq12 5079 |
. . . 4
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → (𝑋 ≤s 𝑌 ↔ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))) |
152 | | breq1 5077 |
. . . . . 6
⊢ (𝑋 = (𝐴 |s 𝐵) → (𝑋 <s 𝑑 ↔ (𝐴 |s 𝐵) <s 𝑑)) |
153 | 152 | ralbidv 3112 |
. . . . 5
⊢ (𝑋 = (𝐴 |s 𝐵) → (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑)) |
154 | | breq2 5078 |
. . . . . 6
⊢ (𝑌 = (𝐶 |s 𝐷) → (𝑎 <s 𝑌 ↔ 𝑎 <s (𝐶 |s 𝐷))) |
155 | 154 | ralbidv 3112 |
. . . . 5
⊢ (𝑌 = (𝐶 |s 𝐷) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑌 ↔ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) |
156 | 153, 155 | bi2anan9 636 |
. . . 4
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌) ↔ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)))) |
157 | 151, 156 | bibi12d 346 |
. . 3
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌)) ↔ ((𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) ↔ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))))) |
158 | 150, 157 | syl5ibr 245 |
. 2
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌)))) |
159 | 158 | impcom 408 |
1
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) |