| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordeleqon | Structured version Visualization version GIF version | ||
| Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
| Ref | Expression |
|---|---|
| ordeleqon | ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onprc 7772 | . . . 4 ⊢ ¬ On ∈ V | |
| 2 | elex 3480 | . . . 4 ⊢ (On ∈ 𝐴 → On ∈ V) | |
| 3 | 1, 2 | mto 197 | . . 3 ⊢ ¬ On ∈ 𝐴 |
| 4 | ordon 7771 | . . . . . 6 ⊢ Ord On | |
| 5 | ordtri3or 6384 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) | |
| 6 | 4, 5 | mpan2 691 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) |
| 7 | df-3or 1087 | . . . . 5 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) | |
| 8 | 6, 7 | sylib 218 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) |
| 9 | 8 | ord 864 | . . 3 ⊢ (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴)) |
| 10 | 3, 9 | mt3i 149 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 11 | eloni 6362 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 12 | ordeq 6359 | . . . 4 ⊢ (𝐴 = On → (Ord 𝐴 ↔ Ord On)) | |
| 13 | 4, 12 | mpbiri 258 | . . 3 ⊢ (𝐴 = On → Ord 𝐴) |
| 14 | 11, 13 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴) |
| 15 | 10, 14 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2108 Vcvv 3459 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: ordsson 7777 ssonprc 7781 ordunisuc 7826 orduninsuc 7838 limomss 7866 omon 7873 limom 7877 tfrlem14 8405 tfr2b 8410 unialeph 10115 ordtoplem 36453 ordcmp 36465 onsupnmax 43252 dflim5 43353 |
| Copyright terms: Public domain | W3C validator |