![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordeleqon | Structured version Visualization version GIF version |
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
Ref | Expression |
---|---|
ordeleqon | ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 7761 | . . . 4 ⊢ ¬ On ∈ V | |
2 | elex 3492 | . . . 4 ⊢ (On ∈ 𝐴 → On ∈ V) | |
3 | 1, 2 | mto 196 | . . 3 ⊢ ¬ On ∈ 𝐴 |
4 | ordon 7760 | . . . . . 6 ⊢ Ord On | |
5 | ordtri3or 6393 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) | |
6 | 4, 5 | mpan2 689 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) |
7 | df-3or 1088 | . . . . 5 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) | |
8 | 6, 7 | sylib 217 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) |
9 | 8 | ord 862 | . . 3 ⊢ (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴)) |
10 | 3, 9 | mt3i 149 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
11 | eloni 6371 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
12 | ordeq 6368 | . . . 4 ⊢ (𝐴 = On → (Ord 𝐴 ↔ Ord On)) | |
13 | 4, 12 | mpbiri 257 | . . 3 ⊢ (𝐴 = On → Ord 𝐴) |
14 | 11, 13 | jaoi 855 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴) |
15 | 10, 14 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 Vcvv 3474 Ord word 6360 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 |
This theorem is referenced by: ordsson 7766 ssonprc 7771 ordunisuc 7816 orduninsuc 7828 limomss 7856 omon 7863 limom 7867 tfrlem14 8387 tfr2b 8392 unialeph 10092 ordtoplem 35308 ordcmp 35320 onsupnmax 41962 dflim5 42064 |
Copyright terms: Public domain | W3C validator |