![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordeleqon | Structured version Visualization version GIF version |
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
Ref | Expression |
---|---|
ordeleqon | ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 7762 | . . . 4 ⊢ ¬ On ∈ V | |
2 | elex 3487 | . . . 4 ⊢ (On ∈ 𝐴 → On ∈ V) | |
3 | 1, 2 | mto 196 | . . 3 ⊢ ¬ On ∈ 𝐴 |
4 | ordon 7761 | . . . . . 6 ⊢ Ord On | |
5 | ordtri3or 6390 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) | |
6 | 4, 5 | mpan2 688 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) |
7 | df-3or 1085 | . . . . 5 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) | |
8 | 6, 7 | sylib 217 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) |
9 | 8 | ord 861 | . . 3 ⊢ (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴)) |
10 | 3, 9 | mt3i 149 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
11 | eloni 6368 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
12 | ordeq 6365 | . . . 4 ⊢ (𝐴 = On → (Ord 𝐴 ↔ Ord On)) | |
13 | 4, 12 | mpbiri 258 | . . 3 ⊢ (𝐴 = On → Ord 𝐴) |
14 | 11, 13 | jaoi 854 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴) |
15 | 10, 14 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 Vcvv 3468 Ord word 6357 Oncon0 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6361 df-on 6362 |
This theorem is referenced by: ordsson 7767 ssonprc 7772 ordunisuc 7817 orduninsuc 7829 limomss 7857 omon 7864 limom 7868 tfrlem14 8392 tfr2b 8397 unialeph 10098 ordtoplem 35828 ordcmp 35840 onsupnmax 42553 dflim5 42655 |
Copyright terms: Public domain | W3C validator |