MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeleqon Structured version   Visualization version   GIF version

Theorem ordeleqon 7715
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.)
Assertion
Ref Expression
ordeleqon (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))

Proof of Theorem ordeleqon
StepHypRef Expression
1 onprc 7711 . . . 4 ¬ On ∈ V
2 elex 3457 . . . 4 (On ∈ 𝐴 → On ∈ V)
31, 2mto 197 . . 3 ¬ On ∈ 𝐴
4 ordon 7710 . . . . . 6 Ord On
5 ordtri3or 6338 . . . . . 6 ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
64, 5mpan2 691 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
7 df-3or 1087 . . . . 5 ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
86, 7sylib 218 . . . 4 (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
98ord 864 . . 3 (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴))
103, 9mt3i 149 . 2 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
11 eloni 6316 . . 3 (𝐴 ∈ On → Ord 𝐴)
12 ordeq 6313 . . . 4 (𝐴 = On → (Ord 𝐴 ↔ Ord On))
134, 12mpbiri 258 . . 3 (𝐴 = On → Ord 𝐴)
1411, 13jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴)
1510, 14impbii 209 1 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  w3o 1085   = wceq 1541  wcel 2111  Vcvv 3436  Ord word 6305  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310
This theorem is referenced by:  ordsson  7716  ssonprc  7720  ordunisuc  7762  orduninsuc  7773  limomss  7801  omon  7808  limom  7812  tfrlem14  8310  tfr2b  8315  unialeph  9992  ordtoplem  36479  ordcmp  36491  onsupnmax  43331  dflim5  43432
  Copyright terms: Public domain W3C validator