MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeleqon Structured version   Visualization version   GIF version

Theorem ordeleqon 7609
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.)
Assertion
Ref Expression
ordeleqon (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))

Proof of Theorem ordeleqon
StepHypRef Expression
1 onprc 7605 . . . 4 ¬ On ∈ V
2 elex 3440 . . . 4 (On ∈ 𝐴 → On ∈ V)
31, 2mto 196 . . 3 ¬ On ∈ 𝐴
4 ordon 7604 . . . . . 6 Ord On
5 ordtri3or 6283 . . . . . 6 ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
64, 5mpan2 687 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
7 df-3or 1086 . . . . 5 ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
86, 7sylib 217 . . . 4 (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
98ord 860 . . 3 (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴))
103, 9mt3i 149 . 2 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
11 eloni 6261 . . 3 (𝐴 ∈ On → Ord 𝐴)
12 ordeq 6258 . . . 4 (𝐴 = On → (Ord 𝐴 ↔ Ord On))
134, 12mpbiri 257 . . 3 (𝐴 = On → Ord 𝐴)
1411, 13jaoi 853 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴)
1510, 14impbii 208 1 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843  w3o 1084   = wceq 1539  wcel 2108  Vcvv 3422  Ord word 6250  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  ordsson  7610  ssonprc  7614  ordunisuc  7654  orduninsuc  7665  limomss  7692  omon  7699  limom  7703  tfrlem14  8193  tfr2b  8198  unialeph  9788  ordtoplem  34551  ordcmp  34563
  Copyright terms: Public domain W3C validator