Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordeleqon | Structured version Visualization version GIF version |
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
Ref | Expression |
---|---|
ordeleqon | ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 7690 | . . . 4 ⊢ ¬ On ∈ V | |
2 | elex 3459 | . . . 4 ⊢ (On ∈ 𝐴 → On ∈ V) | |
3 | 1, 2 | mto 196 | . . 3 ⊢ ¬ On ∈ 𝐴 |
4 | ordon 7689 | . . . . . 6 ⊢ Ord On | |
5 | ordtri3or 6334 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) | |
6 | 4, 5 | mpan2 688 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) |
7 | df-3or 1087 | . . . . 5 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) | |
8 | 6, 7 | sylib 217 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) |
9 | 8 | ord 861 | . . 3 ⊢ (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴)) |
10 | 3, 9 | mt3i 149 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
11 | eloni 6312 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
12 | ordeq 6309 | . . . 4 ⊢ (𝐴 = On → (Ord 𝐴 ↔ Ord On)) | |
13 | 4, 12 | mpbiri 257 | . . 3 ⊢ (𝐴 = On → Ord 𝐴) |
14 | 11, 13 | jaoi 854 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴) |
15 | 10, 14 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 Vcvv 3441 Ord word 6301 Oncon0 6302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-tr 5210 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-ord 6305 df-on 6306 |
This theorem is referenced by: ordsson 7695 ssonprc 7700 ordunisuc 7745 orduninsuc 7757 limomss 7785 omon 7792 limom 7796 tfrlem14 8292 tfr2b 8297 unialeph 9958 ordtoplem 34720 ordcmp 34732 dflim5 41323 |
Copyright terms: Public domain | W3C validator |