MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeleqon Structured version   Visualization version   GIF version

Theorem ordeleqon 7555
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.)
Assertion
Ref Expression
ordeleqon (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))

Proof of Theorem ordeleqon
StepHypRef Expression
1 onprc 7551 . . . 4 ¬ On ∈ V
2 elex 3419 . . . 4 (On ∈ 𝐴 → On ∈ V)
31, 2mto 200 . . 3 ¬ On ∈ 𝐴
4 ordon 7550 . . . . . 6 Ord On
5 ordtri3or 6234 . . . . . 6 ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
64, 5mpan2 691 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
7 df-3or 1090 . . . . 5 ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
86, 7sylib 221 . . . 4 (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
98ord 864 . . 3 (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴))
103, 9mt3i 151 . 2 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
11 eloni 6212 . . 3 (𝐴 ∈ On → Ord 𝐴)
12 ordeq 6209 . . . 4 (𝐴 = On → (Ord 𝐴 ↔ Ord On))
134, 12mpbiri 261 . . 3 (𝐴 = On → Ord 𝐴)
1411, 13jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴)
1510, 14impbii 212 1 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 847  w3o 1088   = wceq 1543  wcel 2110  Vcvv 3401  Ord word 6201  Oncon0 6202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2713  df-cleq 2726  df-clel 2812  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-tr 5151  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-ord 6205  df-on 6206
This theorem is referenced by:  ordsson  7556  ssonprc  7560  ordunisuc  7600  orduninsuc  7611  limomss  7638  omon  7645  limom  7649  tfrlem14  8116  tfr2b  8121  unialeph  9698  ordtoplem  34318  ordcmp  34330
  Copyright terms: Public domain W3C validator