![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordeleqon | Structured version Visualization version GIF version |
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
Ref | Expression |
---|---|
ordeleqon | ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 7717 | . . . 4 ⊢ ¬ On ∈ V | |
2 | elex 3466 | . . . 4 ⊢ (On ∈ 𝐴 → On ∈ V) | |
3 | 1, 2 | mto 196 | . . 3 ⊢ ¬ On ∈ 𝐴 |
4 | ordon 7716 | . . . . . 6 ⊢ Ord On | |
5 | ordtri3or 6354 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) | |
6 | 4, 5 | mpan2 690 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) |
7 | df-3or 1089 | . . . . 5 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) | |
8 | 6, 7 | sylib 217 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) |
9 | 8 | ord 863 | . . 3 ⊢ (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴)) |
10 | 3, 9 | mt3i 149 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
11 | eloni 6332 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
12 | ordeq 6329 | . . . 4 ⊢ (𝐴 = On → (Ord 𝐴 ↔ Ord On)) | |
13 | 4, 12 | mpbiri 258 | . . 3 ⊢ (𝐴 = On → Ord 𝐴) |
14 | 11, 13 | jaoi 856 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴) |
15 | 10, 14 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 Vcvv 3448 Ord word 6321 Oncon0 6322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-tr 5228 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-ord 6325 df-on 6326 |
This theorem is referenced by: ordsson 7722 ssonprc 7727 ordunisuc 7772 orduninsuc 7784 limomss 7812 omon 7819 limom 7823 tfrlem14 8342 tfr2b 8347 unialeph 10044 ordtoplem 34936 ordcmp 34948 onsupnmax 41591 dflim5 41693 |
Copyright terms: Public domain | W3C validator |