MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeleqon Structured version   Visualization version   GIF version

Theorem ordeleqon 7761
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.)
Assertion
Ref Expression
ordeleqon (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))

Proof of Theorem ordeleqon
StepHypRef Expression
1 onprc 7757 . . . 4 ¬ On ∈ V
2 elex 3471 . . . 4 (On ∈ 𝐴 → On ∈ V)
31, 2mto 197 . . 3 ¬ On ∈ 𝐴
4 ordon 7756 . . . . . 6 Ord On
5 ordtri3or 6367 . . . . . 6 ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
64, 5mpan2 691 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴))
7 df-3or 1087 . . . . 5 ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
86, 7sylib 218 . . . 4 (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴))
98ord 864 . . 3 (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴))
103, 9mt3i 149 . 2 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
11 eloni 6345 . . 3 (𝐴 ∈ On → Ord 𝐴)
12 ordeq 6342 . . . 4 (𝐴 = On → (Ord 𝐴 ↔ Ord On))
134, 12mpbiri 258 . . 3 (𝐴 = On → Ord 𝐴)
1411, 13jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴)
1510, 14impbii 209 1 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  w3o 1085   = wceq 1540  wcel 2109  Vcvv 3450  Ord word 6334  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by:  ordsson  7762  ssonprc  7766  ordunisuc  7810  orduninsuc  7822  limomss  7850  omon  7857  limom  7861  tfrlem14  8362  tfr2b  8367  unialeph  10061  ordtoplem  36430  ordcmp  36442  onsupnmax  43224  dflim5  43325
  Copyright terms: Public domain W3C validator