| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordeleqon | Structured version Visualization version GIF version | ||
| Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
| Ref | Expression |
|---|---|
| ordeleqon | ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onprc 7711 | . . . 4 ⊢ ¬ On ∈ V | |
| 2 | elex 3457 | . . . 4 ⊢ (On ∈ 𝐴 → On ∈ V) | |
| 3 | 1, 2 | mto 197 | . . 3 ⊢ ¬ On ∈ 𝐴 |
| 4 | ordon 7710 | . . . . . 6 ⊢ Ord On | |
| 5 | ordtri3or 6338 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) | |
| 6 | 4, 5 | mpan2 691 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴)) |
| 7 | df-3or 1087 | . . . . 5 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴) ↔ ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) | |
| 8 | 6, 7 | sylib 218 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ∈ On ∨ 𝐴 = On) ∨ On ∈ 𝐴)) |
| 9 | 8 | ord 864 | . . 3 ⊢ (Ord 𝐴 → (¬ (𝐴 ∈ On ∨ 𝐴 = On) → On ∈ 𝐴)) |
| 10 | 3, 9 | mt3i 149 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 11 | eloni 6316 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 12 | ordeq 6313 | . . . 4 ⊢ (𝐴 = On → (Ord 𝐴 ↔ Ord On)) | |
| 13 | 4, 12 | mpbiri 258 | . . 3 ⊢ (𝐴 = On → Ord 𝐴) |
| 14 | 11, 13 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → Ord 𝐴) |
| 15 | 10, 14 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 Vcvv 3436 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: ordsson 7716 ssonprc 7720 ordunisuc 7762 orduninsuc 7773 limomss 7801 omon 7808 limom 7812 tfrlem14 8310 tfr2b 8315 unialeph 9992 ordtoplem 36479 ordcmp 36491 onsupnmax 43331 dflim5 43432 |
| Copyright terms: Public domain | W3C validator |