MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem4 Structured version   Visualization version   GIF version

Theorem zorn2lem4 10452
Description: Lemma for zorn2 10459. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem4 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . 2 ¬ (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)
2 df-ne 2926 . . . . 5 (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅)
32ralbii 3075 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥 ∈ On ¬ 𝐷 = ∅)
4 df-ral 3045 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
5 ralnex 3055 . . . 4 (∀𝑥 ∈ On ¬ 𝐷 = ∅ ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
63, 4, 53bitr3i 301 . . 3 (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
7 weso 5629 . . . . . . . . 9 (𝑤 We 𝐴𝑤 Or 𝐴)
87adantr 480 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
9 vex 3451 . . . . . . . 8 𝑤 ∈ V
10 soex 7897 . . . . . . . 8 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
118, 9, 10sylancl 586 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝐴 ∈ V)
12 zorn2lem.3 . . . . . . . . . . 11 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
1312tfr1 8365 . . . . . . . . . 10 𝐹 Fn On
14 fvelrnb 6921 . . . . . . . . . 10 (𝐹 Fn On → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦)
16 nfv 1914 . . . . . . . . . . 11 𝑥 𝑤 We 𝐴
17 nfa1 2152 . . . . . . . . . . 11 𝑥𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)
1816, 17nfan 1899 . . . . . . . . . 10 𝑥(𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
19 nfv 1914 . . . . . . . . . 10 𝑥 𝑦𝐴
20 zorn2lem.5 . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
2120ssrab3 4045 . . . . . . . . . . . . . . . . 17 𝐷𝐴
22 zorn2lem.4 . . . . . . . . . . . . . . . . . 18 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
2312, 22, 20zorn2lem1 10449 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
2421, 23sselid 3944 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐴)
25 eleq1 2816 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐴𝑦𝐴))
2624, 25syl5ibcom 245 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ((𝐹𝑥) = 𝑦𝑦𝐴))
2726exp32 420 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2827com12 32 . . . . . . . . . . . . 13 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2928a2d 29 . . . . . . . . . . . 12 (𝑤 We 𝐴 → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3029spsd 2188 . . . . . . . . . . 11 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3130imp 406 . . . . . . . . . 10 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴)))
3218, 19, 31rexlimd 3244 . . . . . . . . 9 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (∃𝑥 ∈ On (𝐹𝑥) = 𝑦𝑦𝐴))
3315, 32biimtrid 242 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑦 ∈ ran 𝐹𝑦𝐴))
3433ssrdv 3952 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹𝐴)
3511, 34ssexd 5279 . . . . . 6 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹 ∈ V)
3635ex 412 . . . . 5 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3736adantl 481 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3812, 22, 20zorn2lem3 10451 . . . . . . . . . . . . . 14 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3938exp45 438 . . . . . . . . . . . . 13 (𝑅 Po 𝐴 → (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4039com23 86 . . . . . . . . . . . 12 (𝑅 Po 𝐴 → (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4140imp 406 . . . . . . . . . . 11 ((𝑅 Po 𝐴𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4241a2d 29 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4342imp4a 422 . . . . . . . . 9 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4443alrimdv 1929 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4544alimdv 1916 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
46 r2al 3173 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
4745, 46imbitrrdi 252 . . . . . 6 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)))
48 ssid 3969 . . . . . . . 8 On ⊆ On
4913tz7.48lem 8409 . . . . . . . 8 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
5048, 49mpan 690 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun (𝐹 ↾ On))
51 fnrel 6620 . . . . . . . . . . 11 (𝐹 Fn On → Rel 𝐹)
5213, 51ax-mp 5 . . . . . . . . . 10 Rel 𝐹
5313fndmi 6622 . . . . . . . . . . 11 dom 𝐹 = On
5453eqimssi 4007 . . . . . . . . . 10 dom 𝐹 ⊆ On
55 relssres 5993 . . . . . . . . . 10 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
5652, 54, 55mp2an 692 . . . . . . . . 9 (𝐹 ↾ On) = 𝐹
5756cnveqi 5838 . . . . . . . 8 (𝐹 ↾ On) = 𝐹
5857funeqi 6537 . . . . . . 7 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
5950, 58sylib 218 . . . . . 6 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun 𝐹)
6047, 59syl6 35 . . . . 5 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → Fun 𝐹))
61 onprc 7754 . . . . . 6 ¬ On ∈ V
62 funrnex 7932 . . . . . . . 8 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
6362com12 32 . . . . . . 7 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
64 df-rn 5649 . . . . . . . 8 ran 𝐹 = dom 𝐹
6564eleq1i 2819 . . . . . . 7 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
66 dfdm4 5859 . . . . . . . . 9 dom 𝐹 = ran 𝐹
6753, 66eqtr3i 2754 . . . . . . . 8 On = ran 𝐹
6867eleq1i 2819 . . . . . . 7 (On ∈ V ↔ ran 𝐹 ∈ V)
6963, 65, 683imtr4g 296 . . . . . 6 (Fun 𝐹 → (ran 𝐹 ∈ V → On ∈ V))
7061, 69mtoi 199 . . . . 5 (Fun 𝐹 → ¬ ran 𝐹 ∈ V)
7160, 70syl6 35 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ¬ ran 𝐹 ∈ V))
7237, 71jcad 512 . . 3 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
736, 72biimtrrid 243 . 2 ((𝑅 Po 𝐴𝑤 We 𝐴) → (¬ ∃𝑥 ∈ On 𝐷 = ∅ → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
741, 73mt3i 149 1 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188   Po wpo 5544   Or wor 5545   We wwe 5590  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Rel wrel 5643  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  cfv 6511  crio 7343  recscrecs 8339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  zorn2lem7  10455
  Copyright terms: Public domain W3C validator