MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem4 Structured version   Visualization version   GIF version

Theorem zorn2lem4 10568
Description: Lemma for zorn2 10575. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem4 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . 2 ¬ (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)
2 df-ne 2947 . . . . 5 (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅)
32ralbii 3099 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥 ∈ On ¬ 𝐷 = ∅)
4 df-ral 3068 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
5 ralnex 3078 . . . 4 (∀𝑥 ∈ On ¬ 𝐷 = ∅ ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
63, 4, 53bitr3i 301 . . 3 (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
7 weso 5691 . . . . . . . . 9 (𝑤 We 𝐴𝑤 Or 𝐴)
87adantr 480 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
9 vex 3492 . . . . . . . 8 𝑤 ∈ V
10 soex 7961 . . . . . . . 8 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
118, 9, 10sylancl 585 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝐴 ∈ V)
12 zorn2lem.3 . . . . . . . . . . 11 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
1312tfr1 8453 . . . . . . . . . 10 𝐹 Fn On
14 fvelrnb 6982 . . . . . . . . . 10 (𝐹 Fn On → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦)
16 nfv 1913 . . . . . . . . . . 11 𝑥 𝑤 We 𝐴
17 nfa1 2152 . . . . . . . . . . 11 𝑥𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)
1816, 17nfan 1898 . . . . . . . . . 10 𝑥(𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
19 nfv 1913 . . . . . . . . . 10 𝑥 𝑦𝐴
20 zorn2lem.5 . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
2120ssrab3 4105 . . . . . . . . . . . . . . . . 17 𝐷𝐴
22 zorn2lem.4 . . . . . . . . . . . . . . . . . 18 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
2312, 22, 20zorn2lem1 10565 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
2421, 23sselid 4006 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐴)
25 eleq1 2832 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐴𝑦𝐴))
2624, 25syl5ibcom 245 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ((𝐹𝑥) = 𝑦𝑦𝐴))
2726exp32 420 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2827com12 32 . . . . . . . . . . . . 13 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2928a2d 29 . . . . . . . . . . . 12 (𝑤 We 𝐴 → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3029spsd 2188 . . . . . . . . . . 11 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3130imp 406 . . . . . . . . . 10 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴)))
3218, 19, 31rexlimd 3272 . . . . . . . . 9 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (∃𝑥 ∈ On (𝐹𝑥) = 𝑦𝑦𝐴))
3315, 32biimtrid 242 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑦 ∈ ran 𝐹𝑦𝐴))
3433ssrdv 4014 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹𝐴)
3511, 34ssexd 5342 . . . . . 6 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹 ∈ V)
3635ex 412 . . . . 5 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3736adantl 481 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3812, 22, 20zorn2lem3 10567 . . . . . . . . . . . . . 14 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3938exp45 438 . . . . . . . . . . . . 13 (𝑅 Po 𝐴 → (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4039com23 86 . . . . . . . . . . . 12 (𝑅 Po 𝐴 → (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4140imp 406 . . . . . . . . . . 11 ((𝑅 Po 𝐴𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4241a2d 29 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4342imp4a 422 . . . . . . . . 9 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4443alrimdv 1928 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4544alimdv 1915 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
46 r2al 3201 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
4745, 46imbitrrdi 252 . . . . . 6 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)))
48 ssid 4031 . . . . . . . 8 On ⊆ On
4913tz7.48lem 8497 . . . . . . . 8 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
5048, 49mpan 689 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun (𝐹 ↾ On))
51 fnrel 6681 . . . . . . . . . . 11 (𝐹 Fn On → Rel 𝐹)
5213, 51ax-mp 5 . . . . . . . . . 10 Rel 𝐹
5313fndmi 6683 . . . . . . . . . . 11 dom 𝐹 = On
5453eqimssi 4069 . . . . . . . . . 10 dom 𝐹 ⊆ On
55 relssres 6051 . . . . . . . . . 10 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
5652, 54, 55mp2an 691 . . . . . . . . 9 (𝐹 ↾ On) = 𝐹
5756cnveqi 5899 . . . . . . . 8 (𝐹 ↾ On) = 𝐹
5857funeqi 6599 . . . . . . 7 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
5950, 58sylib 218 . . . . . 6 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun 𝐹)
6047, 59syl6 35 . . . . 5 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → Fun 𝐹))
61 onprc 7813 . . . . . 6 ¬ On ∈ V
62 funrnex 7994 . . . . . . . 8 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
6362com12 32 . . . . . . 7 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
64 df-rn 5711 . . . . . . . 8 ran 𝐹 = dom 𝐹
6564eleq1i 2835 . . . . . . 7 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
66 dfdm4 5920 . . . . . . . . 9 dom 𝐹 = ran 𝐹
6753, 66eqtr3i 2770 . . . . . . . 8 On = ran 𝐹
6867eleq1i 2835 . . . . . . 7 (On ∈ V ↔ ran 𝐹 ∈ V)
6963, 65, 683imtr4g 296 . . . . . 6 (Fun 𝐹 → (ran 𝐹 ∈ V → On ∈ V))
7061, 69mtoi 199 . . . . 5 (Fun 𝐹 → ¬ ran 𝐹 ∈ V)
7160, 70syl6 35 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ¬ ran 𝐹 ∈ V))
7237, 71jcad 512 . . 3 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
736, 72biimtrrid 243 . 2 ((𝑅 Po 𝐴𝑤 We 𝐴) → (¬ ∃𝑥 ∈ On 𝐷 = ∅ → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
741, 73mt3i 149 1 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249   Po wpo 5605   Or wor 5606   We wwe 5651  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  cfv 6573  crio 7403  recscrecs 8426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427
This theorem is referenced by:  zorn2lem7  10571
  Copyright terms: Public domain W3C validator