MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem4 Structured version   Visualization version   GIF version

Theorem zorn2lem4 9910
Description: Lemma for zorn2 9917. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem4 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 406 . 2 ¬ (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)
2 df-ne 2988 . . . . 5 (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅)
32ralbii 3133 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥 ∈ On ¬ 𝐷 = ∅)
4 df-ral 3111 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
5 ralnex 3199 . . . 4 (∀𝑥 ∈ On ¬ 𝐷 = ∅ ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
63, 4, 53bitr3i 304 . . 3 (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
7 weso 5510 . . . . . . . . 9 (𝑤 We 𝐴𝑤 Or 𝐴)
87adantr 484 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
9 vex 3444 . . . . . . . 8 𝑤 ∈ V
10 soex 7608 . . . . . . . 8 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
118, 9, 10sylancl 589 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝐴 ∈ V)
12 zorn2lem.3 . . . . . . . . . . 11 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
1312tfr1 8016 . . . . . . . . . 10 𝐹 Fn On
14 fvelrnb 6701 . . . . . . . . . 10 (𝐹 Fn On → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦)
16 nfv 1915 . . . . . . . . . . 11 𝑥 𝑤 We 𝐴
17 nfa1 2152 . . . . . . . . . . 11 𝑥𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)
1816, 17nfan 1900 . . . . . . . . . 10 𝑥(𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
19 nfv 1915 . . . . . . . . . 10 𝑥 𝑦𝐴
20 zorn2lem.5 . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
2120ssrab3 4008 . . . . . . . . . . . . . . . . 17 𝐷𝐴
22 zorn2lem.4 . . . . . . . . . . . . . . . . . 18 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
2312, 22, 20zorn2lem1 9907 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
2421, 23sseldi 3913 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐴)
25 eleq1 2877 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐴𝑦𝐴))
2624, 25syl5ibcom 248 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ((𝐹𝑥) = 𝑦𝑦𝐴))
2726exp32 424 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2827com12 32 . . . . . . . . . . . . 13 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2928a2d 29 . . . . . . . . . . . 12 (𝑤 We 𝐴 → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3029spsd 2184 . . . . . . . . . . 11 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3130imp 410 . . . . . . . . . 10 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴)))
3218, 19, 31rexlimd 3276 . . . . . . . . 9 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (∃𝑥 ∈ On (𝐹𝑥) = 𝑦𝑦𝐴))
3315, 32syl5bi 245 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑦 ∈ ran 𝐹𝑦𝐴))
3433ssrdv 3921 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹𝐴)
3511, 34ssexd 5192 . . . . . 6 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹 ∈ V)
3635ex 416 . . . . 5 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3736adantl 485 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3812, 22, 20zorn2lem3 9909 . . . . . . . . . . . . . 14 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3938exp45 442 . . . . . . . . . . . . 13 (𝑅 Po 𝐴 → (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4039com23 86 . . . . . . . . . . . 12 (𝑅 Po 𝐴 → (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4140imp 410 . . . . . . . . . . 11 ((𝑅 Po 𝐴𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4241a2d 29 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4342imp4a 426 . . . . . . . . 9 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4443alrimdv 1930 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4544alimdv 1917 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
46 r2al 3166 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
4745, 46syl6ibr 255 . . . . . 6 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)))
48 ssid 3937 . . . . . . . 8 On ⊆ On
4913tz7.48lem 8060 . . . . . . . 8 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
5048, 49mpan 689 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun (𝐹 ↾ On))
51 fnrel 6424 . . . . . . . . . . 11 (𝐹 Fn On → Rel 𝐹)
5213, 51ax-mp 5 . . . . . . . . . 10 Rel 𝐹
5313fndmi 6426 . . . . . . . . . . 11 dom 𝐹 = On
5453eqimssi 3973 . . . . . . . . . 10 dom 𝐹 ⊆ On
55 relssres 5859 . . . . . . . . . 10 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
5652, 54, 55mp2an 691 . . . . . . . . 9 (𝐹 ↾ On) = 𝐹
5756cnveqi 5709 . . . . . . . 8 (𝐹 ↾ On) = 𝐹
5857funeqi 6345 . . . . . . 7 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
5950, 58sylib 221 . . . . . 6 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun 𝐹)
6047, 59syl6 35 . . . . 5 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → Fun 𝐹))
61 onprc 7479 . . . . . 6 ¬ On ∈ V
62 funrnex 7637 . . . . . . . 8 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
6362com12 32 . . . . . . 7 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
64 df-rn 5530 . . . . . . . 8 ran 𝐹 = dom 𝐹
6564eleq1i 2880 . . . . . . 7 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
66 dfdm4 5728 . . . . . . . . 9 dom 𝐹 = ran 𝐹
6753, 66eqtr3i 2823 . . . . . . . 8 On = ran 𝐹
6867eleq1i 2880 . . . . . . 7 (On ∈ V ↔ ran 𝐹 ∈ V)
6963, 65, 683imtr4g 299 . . . . . 6 (Fun 𝐹 → (ran 𝐹 ∈ V → On ∈ V))
7061, 69mtoi 202 . . . . 5 (Fun 𝐹 → ¬ ran 𝐹 ∈ V)
7160, 70syl6 35 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ¬ ran 𝐹 ∈ V))
7237, 71jcad 516 . . 3 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
736, 72syl5bir 246 . 2 ((𝑅 Po 𝐴𝑤 We 𝐴) → (¬ ∃𝑥 ∈ On 𝐷 = ∅ → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
741, 73mt3i 151 1 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  cmpt 5110   Po wpo 5436   Or wor 5437   We wwe 5477  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Rel wrel 5524  Oncon0 6159  Fun wfun 6318   Fn wfn 6319  cfv 6324  crio 7092  recscrecs 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-wrecs 7930  df-recs 7991
This theorem is referenced by:  zorn2lem7  9913
  Copyright terms: Public domain W3C validator