MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem4 Structured version   Visualization version   GIF version

Theorem zorn2lem4 10518
Description: Lemma for zorn2 10525. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem4 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . 2 ¬ (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)
2 df-ne 2934 . . . . 5 (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅)
32ralbii 3083 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥 ∈ On ¬ 𝐷 = ∅)
4 df-ral 3053 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
5 ralnex 3063 . . . 4 (∀𝑥 ∈ On ¬ 𝐷 = ∅ ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
63, 4, 53bitr3i 301 . . 3 (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
7 weso 5650 . . . . . . . . 9 (𝑤 We 𝐴𝑤 Or 𝐴)
87adantr 480 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
9 vex 3468 . . . . . . . 8 𝑤 ∈ V
10 soex 7922 . . . . . . . 8 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
118, 9, 10sylancl 586 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝐴 ∈ V)
12 zorn2lem.3 . . . . . . . . . . 11 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
1312tfr1 8416 . . . . . . . . . 10 𝐹 Fn On
14 fvelrnb 6944 . . . . . . . . . 10 (𝐹 Fn On → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦)
16 nfv 1914 . . . . . . . . . . 11 𝑥 𝑤 We 𝐴
17 nfa1 2152 . . . . . . . . . . 11 𝑥𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)
1816, 17nfan 1899 . . . . . . . . . 10 𝑥(𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
19 nfv 1914 . . . . . . . . . 10 𝑥 𝑦𝐴
20 zorn2lem.5 . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
2120ssrab3 4062 . . . . . . . . . . . . . . . . 17 𝐷𝐴
22 zorn2lem.4 . . . . . . . . . . . . . . . . . 18 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
2312, 22, 20zorn2lem1 10515 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
2421, 23sselid 3961 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐴)
25 eleq1 2823 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐴𝑦𝐴))
2624, 25syl5ibcom 245 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ((𝐹𝑥) = 𝑦𝑦𝐴))
2726exp32 420 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2827com12 32 . . . . . . . . . . . . 13 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2928a2d 29 . . . . . . . . . . . 12 (𝑤 We 𝐴 → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3029spsd 2188 . . . . . . . . . . 11 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3130imp 406 . . . . . . . . . 10 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴)))
3218, 19, 31rexlimd 3253 . . . . . . . . 9 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (∃𝑥 ∈ On (𝐹𝑥) = 𝑦𝑦𝐴))
3315, 32biimtrid 242 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑦 ∈ ran 𝐹𝑦𝐴))
3433ssrdv 3969 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹𝐴)
3511, 34ssexd 5299 . . . . . 6 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹 ∈ V)
3635ex 412 . . . . 5 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3736adantl 481 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3812, 22, 20zorn2lem3 10517 . . . . . . . . . . . . . 14 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3938exp45 438 . . . . . . . . . . . . 13 (𝑅 Po 𝐴 → (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4039com23 86 . . . . . . . . . . . 12 (𝑅 Po 𝐴 → (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4140imp 406 . . . . . . . . . . 11 ((𝑅 Po 𝐴𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4241a2d 29 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4342imp4a 422 . . . . . . . . 9 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4443alrimdv 1929 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4544alimdv 1916 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
46 r2al 3181 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
4745, 46imbitrrdi 252 . . . . . 6 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)))
48 ssid 3986 . . . . . . . 8 On ⊆ On
4913tz7.48lem 8460 . . . . . . . 8 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
5048, 49mpan 690 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun (𝐹 ↾ On))
51 fnrel 6645 . . . . . . . . . . 11 (𝐹 Fn On → Rel 𝐹)
5213, 51ax-mp 5 . . . . . . . . . 10 Rel 𝐹
5313fndmi 6647 . . . . . . . . . . 11 dom 𝐹 = On
5453eqimssi 4024 . . . . . . . . . 10 dom 𝐹 ⊆ On
55 relssres 6014 . . . . . . . . . 10 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
5652, 54, 55mp2an 692 . . . . . . . . 9 (𝐹 ↾ On) = 𝐹
5756cnveqi 5859 . . . . . . . 8 (𝐹 ↾ On) = 𝐹
5857funeqi 6562 . . . . . . 7 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
5950, 58sylib 218 . . . . . 6 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun 𝐹)
6047, 59syl6 35 . . . . 5 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → Fun 𝐹))
61 onprc 7777 . . . . . 6 ¬ On ∈ V
62 funrnex 7957 . . . . . . . 8 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
6362com12 32 . . . . . . 7 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
64 df-rn 5670 . . . . . . . 8 ran 𝐹 = dom 𝐹
6564eleq1i 2826 . . . . . . 7 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
66 dfdm4 5880 . . . . . . . . 9 dom 𝐹 = ran 𝐹
6753, 66eqtr3i 2761 . . . . . . . 8 On = ran 𝐹
6867eleq1i 2826 . . . . . . 7 (On ∈ V ↔ ran 𝐹 ∈ V)
6963, 65, 683imtr4g 296 . . . . . 6 (Fun 𝐹 → (ran 𝐹 ∈ V → On ∈ V))
7061, 69mtoi 199 . . . . 5 (Fun 𝐹 → ¬ ran 𝐹 ∈ V)
7160, 70syl6 35 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ¬ ran 𝐹 ∈ V))
7237, 71jcad 512 . . 3 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
736, 72biimtrrid 243 . 2 ((𝑅 Po 𝐴𝑤 We 𝐴) → (¬ ∃𝑥 ∈ On 𝐷 = ∅ → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
741, 73mt3i 149 1 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931  c0 4313   class class class wbr 5124  cmpt 5206   Po wpo 5564   Or wor 5565   We wwe 5610  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Rel wrel 5664  Oncon0 6357  Fun wfun 6530   Fn wfn 6531  cfv 6536  crio 7366  recscrecs 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390
This theorem is referenced by:  zorn2lem7  10521
  Copyright terms: Public domain W3C validator