MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssALT Structured version   Visualization version   GIF version

Theorem infpssALT 10000
Description: Alternate proof of infpss 9904, shorter but requiring Replacement (ax-rep 5205). (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infpssALT (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infpssALT
StepHypRef Expression
1 ominf4 9999 . 2 ¬ ω ∈ FinIV
2 reldom 8697 . . . . 5 Rel ≼
32brrelex2i 5635 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
4 isfin4 9984 . . . 4 (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐴𝑥𝐴)))
53, 4syl 17 . . 3 (ω ≼ 𝐴 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐴𝑥𝐴)))
6 domfin4 9998 . . . 4 ((𝐴 ∈ FinIV ∧ ω ≼ 𝐴) → ω ∈ FinIV)
76expcom 413 . . 3 (ω ≼ 𝐴 → (𝐴 ∈ FinIV → ω ∈ FinIV))
85, 7sylbird 259 . 2 (ω ≼ 𝐴 → (¬ ∃𝑥(𝑥𝐴𝑥𝐴) → ω ∈ FinIV))
91, 8mt3i 149 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wex 1783  wcel 2108  Vcvv 3422  wpss 3884   class class class wbr 5070  ωcom 7687  cen 8688  cdom 8689  FinIVcfin4 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693  df-fin4 9974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator