Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infpssALT | Structured version Visualization version GIF version |
Description: Alternate proof of infpss 9974, shorter but requiring Replacement (ax-rep 5214). (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
infpssALT | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ominf4 10069 | . 2 ⊢ ¬ ω ∈ FinIV | |
2 | reldom 8722 | . . . . 5 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5645 | . . . 4 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
4 | isfin4 10054 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) |
6 | domfin4 10068 | . . . 4 ⊢ ((𝐴 ∈ FinIV ∧ ω ≼ 𝐴) → ω ∈ FinIV) | |
7 | 6 | expcom 414 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ∈ FinIV → ω ∈ FinIV)) |
8 | 5, 7 | sylbird 259 | . 2 ⊢ (ω ≼ 𝐴 → (¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) → ω ∈ FinIV)) |
9 | 1, 8 | mt3i 149 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 ⊊ wpss 3893 class class class wbr 5079 ωcom 7706 ≈ cen 8713 ≼ cdom 8714 FinIVcfin4 10037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-om 7707 df-er 8481 df-en 8717 df-dom 8718 df-fin4 10044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |