| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infpssALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of infpss 10145, shorter but requiring Replacement (ax-rep 5229). (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| infpssALT | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ominf4 10241 | . 2 ⊢ ¬ ω ∈ FinIV | |
| 2 | reldom 8901 | . . . . 5 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5688 | . . . 4 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 4 | isfin4 10226 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) |
| 6 | domfin4 10240 | . . . 4 ⊢ ((𝐴 ∈ FinIV ∧ ω ≼ 𝐴) → ω ∈ FinIV) | |
| 7 | 6 | expcom 413 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ∈ FinIV → ω ∈ FinIV)) |
| 8 | 5, 7 | sylbird 260 | . 2 ⊢ (ω ≼ 𝐴 → (¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) → ω ∈ FinIV)) |
| 9 | 1, 8 | mt3i 149 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 ⊊ wpss 3912 class class class wbr 5102 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 FinIVcfin4 10209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-er 8648 df-en 8896 df-dom 8897 df-fin4 10216 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |