Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infpssALT | Structured version Visualization version GIF version |
Description: Alternate proof of infpss 9973, shorter but requiring Replacement (ax-rep 5209). (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
infpssALT | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ominf4 10068 | . 2 ⊢ ¬ ω ∈ FinIV | |
2 | reldom 8739 | . . . . 5 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5644 | . . . 4 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
4 | isfin4 10053 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴))) |
6 | domfin4 10067 | . . . 4 ⊢ ((𝐴 ∈ FinIV ∧ ω ≼ 𝐴) → ω ∈ FinIV) | |
7 | 6 | expcom 414 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ∈ FinIV → ω ∈ FinIV)) |
8 | 5, 7 | sylbird 259 | . 2 ⊢ (ω ≼ 𝐴 → (¬ ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) → ω ∈ FinIV)) |
9 | 1, 8 | mt3i 149 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ⊊ wpss 3888 class class class wbr 5074 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 FinIVcfin4 10036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-er 8498 df-en 8734 df-dom 8735 df-fin4 10043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |