| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harcard | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| harcard | ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9599 | . 2 ⊢ (har‘𝐴) ∈ On | |
| 2 | harndom 9602 | . . . . . . 7 ⊢ ¬ (har‘𝐴) ≼ 𝐴 | |
| 3 | simpll 767 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On) | |
| 4 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴)) | |
| 5 | elharval 9601 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) | |
| 6 | 4, 5 | sylib 218 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 7 | 6 | simpld 494 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On) |
| 8 | ontri1 6418 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) | |
| 9 | 3, 7, 8 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 10 | simpllr 776 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≈ 𝑥) | |
| 11 | ssdomg 9040 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ V → (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦)) | |
| 12 | 11 | elv 3485 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦) |
| 13 | 6 | simprd 495 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ≼ 𝐴) |
| 14 | domtr 9047 | . . . . . . . . . . 11 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝐴) → 𝑥 ≼ 𝐴) | |
| 15 | 12, 13, 14 | syl2anr 597 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → 𝑥 ≼ 𝐴) |
| 16 | endomtr 9052 | . . . . . . . . . 10 ⊢ (((har‘𝐴) ≈ 𝑥 ∧ 𝑥 ≼ 𝐴) → (har‘𝐴) ≼ 𝐴) | |
| 17 | 10, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≼ 𝐴) |
| 18 | 17 | ex 412 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 → (har‘𝐴) ≼ 𝐴)) |
| 19 | 9, 18 | sylbird 260 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦 ∈ 𝑥 → (har‘𝐴) ≼ 𝐴)) |
| 20 | 2, 19 | mt3i 149 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ 𝑥) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦 ∈ 𝑥)) |
| 22 | 21 | ssrdv 3989 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥) |
| 25 | iscard2 10016 | . 2 ⊢ ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))) | |
| 26 | 1, 24, 25 | mpbir2an 711 | 1 ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 class class class wbr 5143 Oncon0 6384 ‘cfv 6561 ≈ cen 8982 ≼ cdom 8983 harchar 9596 cardccrd 9975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-er 8745 df-en 8986 df-dom 8987 df-oi 9550 df-har 9597 df-card 9979 |
| This theorem is referenced by: cardprclem 10019 alephcard 10110 pwcfsdom 10623 hargch 10713 |
| Copyright terms: Public domain | W3C validator |