![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harcard | Structured version Visualization version GIF version |
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
harcard | ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harcl 9597 | . 2 ⊢ (har‘𝐴) ∈ On | |
2 | harndom 9600 | . . . . . . 7 ⊢ ¬ (har‘𝐴) ≼ 𝐴 | |
3 | simpll 767 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On) | |
4 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴)) | |
5 | elharval 9599 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) | |
6 | 4, 5 | sylib 218 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
7 | 6 | simpld 494 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On) |
8 | ontri1 6420 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) | |
9 | 3, 7, 8 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) |
10 | simpllr 776 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≈ 𝑥) | |
11 | ssdomg 9039 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ V → (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦)) | |
12 | 11 | elv 3483 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦) |
13 | 6 | simprd 495 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ≼ 𝐴) |
14 | domtr 9046 | . . . . . . . . . . 11 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝐴) → 𝑥 ≼ 𝐴) | |
15 | 12, 13, 14 | syl2anr 597 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → 𝑥 ≼ 𝐴) |
16 | endomtr 9051 | . . . . . . . . . 10 ⊢ (((har‘𝐴) ≈ 𝑥 ∧ 𝑥 ≼ 𝐴) → (har‘𝐴) ≼ 𝐴) | |
17 | 10, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≼ 𝐴) |
18 | 17 | ex 412 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 → (har‘𝐴) ≼ 𝐴)) |
19 | 9, 18 | sylbird 260 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦 ∈ 𝑥 → (har‘𝐴) ≼ 𝐴)) |
20 | 2, 19 | mt3i 149 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ 𝑥) |
21 | 20 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦 ∈ 𝑥)) |
22 | 21 | ssrdv 4001 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥) |
23 | 22 | ex 412 | . . 3 ⊢ (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
24 | 23 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥) |
25 | iscard2 10014 | . 2 ⊢ ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))) | |
26 | 1, 24, 25 | mpbir2an 711 | 1 ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 Oncon0 6386 ‘cfv 6563 ≈ cen 8981 ≼ cdom 8982 harchar 9594 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-er 8744 df-en 8985 df-dom 8986 df-oi 9548 df-har 9595 df-card 9977 |
This theorem is referenced by: cardprclem 10017 alephcard 10108 pwcfsdom 10621 hargch 10711 |
Copyright terms: Public domain | W3C validator |