| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harcard | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| harcard | ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9519 | . 2 ⊢ (har‘𝐴) ∈ On | |
| 2 | harndom 9522 | . . . . . . 7 ⊢ ¬ (har‘𝐴) ≼ 𝐴 | |
| 3 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On) | |
| 4 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴)) | |
| 5 | elharval 9521 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) | |
| 6 | 4, 5 | sylib 218 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 7 | 6 | simpld 494 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On) |
| 8 | ontri1 6369 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) | |
| 9 | 3, 7, 8 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 10 | simpllr 775 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≈ 𝑥) | |
| 11 | ssdomg 8974 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ V → (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦)) | |
| 12 | 11 | elv 3455 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦) |
| 13 | 6 | simprd 495 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ≼ 𝐴) |
| 14 | domtr 8981 | . . . . . . . . . . 11 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝐴) → 𝑥 ≼ 𝐴) | |
| 15 | 12, 13, 14 | syl2anr 597 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → 𝑥 ≼ 𝐴) |
| 16 | endomtr 8986 | . . . . . . . . . 10 ⊢ (((har‘𝐴) ≈ 𝑥 ∧ 𝑥 ≼ 𝐴) → (har‘𝐴) ≼ 𝐴) | |
| 17 | 10, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≼ 𝐴) |
| 18 | 17 | ex 412 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 → (har‘𝐴) ≼ 𝐴)) |
| 19 | 9, 18 | sylbird 260 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦 ∈ 𝑥 → (har‘𝐴) ≼ 𝐴)) |
| 20 | 2, 19 | mt3i 149 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ 𝑥) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦 ∈ 𝑥)) |
| 22 | 21 | ssrdv 3955 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥) |
| 25 | iscard2 9936 | . 2 ⊢ ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))) | |
| 26 | 1, 24, 25 | mpbir2an 711 | 1 ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 Oncon0 6335 ‘cfv 6514 ≈ cen 8918 ≼ cdom 8919 harchar 9516 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-er 8674 df-en 8922 df-dom 8923 df-oi 9470 df-har 9517 df-card 9899 |
| This theorem is referenced by: cardprclem 9939 alephcard 10030 pwcfsdom 10543 hargch 10633 |
| Copyright terms: Public domain | W3C validator |