| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harcard | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| harcard | ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9581 | . 2 ⊢ (har‘𝐴) ∈ On | |
| 2 | harndom 9584 | . . . . . . 7 ⊢ ¬ (har‘𝐴) ≼ 𝐴 | |
| 3 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On) | |
| 4 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴)) | |
| 5 | elharval 9583 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) | |
| 6 | 4, 5 | sylib 218 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 7 | 6 | simpld 494 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On) |
| 8 | ontri1 6397 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) | |
| 9 | 3, 7, 8 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 10 | simpllr 775 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≈ 𝑥) | |
| 11 | ssdomg 9022 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ V → (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦)) | |
| 12 | 11 | elv 3468 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦) |
| 13 | 6 | simprd 495 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ≼ 𝐴) |
| 14 | domtr 9029 | . . . . . . . . . . 11 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝐴) → 𝑥 ≼ 𝐴) | |
| 15 | 12, 13, 14 | syl2anr 597 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → 𝑥 ≼ 𝐴) |
| 16 | endomtr 9034 | . . . . . . . . . 10 ⊢ (((har‘𝐴) ≈ 𝑥 ∧ 𝑥 ≼ 𝐴) → (har‘𝐴) ≼ 𝐴) | |
| 17 | 10, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≼ 𝐴) |
| 18 | 17 | ex 412 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 → (har‘𝐴) ≼ 𝐴)) |
| 19 | 9, 18 | sylbird 260 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦 ∈ 𝑥 → (har‘𝐴) ≼ 𝐴)) |
| 20 | 2, 19 | mt3i 149 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ 𝑥) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦 ∈ 𝑥)) |
| 22 | 21 | ssrdv 3969 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rgen 3052 | . 2 ⊢ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥) |
| 25 | iscard2 9998 | . 2 ⊢ ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))) | |
| 26 | 1, 24, 25 | mpbir2an 711 | 1 ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ⊆ wss 3931 class class class wbr 5123 Oncon0 6363 ‘cfv 6541 ≈ cen 8964 ≼ cdom 8965 harchar 9578 cardccrd 9957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-er 8727 df-en 8968 df-dom 8969 df-oi 9532 df-har 9579 df-card 9961 |
| This theorem is referenced by: cardprclem 10001 alephcard 10092 pwcfsdom 10605 hargch 10695 |
| Copyright terms: Public domain | W3C validator |