| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harcard | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| harcard | ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9445 | . 2 ⊢ (har‘𝐴) ∈ On | |
| 2 | harndom 9448 | . . . . . . 7 ⊢ ¬ (har‘𝐴) ≼ 𝐴 | |
| 3 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On) | |
| 4 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴)) | |
| 5 | elharval 9447 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) | |
| 6 | 4, 5 | sylib 218 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 7 | 6 | simpld 494 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On) |
| 8 | ontri1 6340 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) | |
| 9 | 3, 7, 8 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 10 | simpllr 775 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≈ 𝑥) | |
| 11 | ssdomg 8922 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ V → (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦)) | |
| 12 | 11 | elv 3441 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦) |
| 13 | 6 | simprd 495 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ≼ 𝐴) |
| 14 | domtr 8929 | . . . . . . . . . . 11 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝐴) → 𝑥 ≼ 𝐴) | |
| 15 | 12, 13, 14 | syl2anr 597 | . . . . . . . . . 10 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → 𝑥 ≼ 𝐴) |
| 16 | endomtr 8934 | . . . . . . . . . 10 ⊢ (((har‘𝐴) ≈ 𝑥 ∧ 𝑥 ≼ 𝐴) → (har‘𝐴) ≼ 𝐴) | |
| 17 | 10, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥 ⊆ 𝑦) → (har‘𝐴) ≼ 𝐴) |
| 18 | 17 | ex 412 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥 ⊆ 𝑦 → (har‘𝐴) ≼ 𝐴)) |
| 19 | 9, 18 | sylbird 260 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦 ∈ 𝑥 → (har‘𝐴) ≼ 𝐴)) |
| 20 | 2, 19 | mt3i 149 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ 𝑥) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦 ∈ 𝑥)) |
| 22 | 21 | ssrdv 3940 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥) |
| 25 | iscard2 9866 | . 2 ⊢ ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))) | |
| 26 | 1, 24, 25 | mpbir2an 711 | 1 ⊢ (card‘(har‘𝐴)) = (har‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 Oncon0 6306 ‘cfv 6481 ≈ cen 8866 ≼ cdom 8867 harchar 9442 cardccrd 9825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-en 8870 df-dom 8871 df-oi 9396 df-har 9443 df-card 9829 |
| This theorem is referenced by: cardprclem 9869 alephcard 9958 pwcfsdom 10471 hargch 10561 |
| Copyright terms: Public domain | W3C validator |