MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Structured version   Visualization version   GIF version

Theorem harcard 9973
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard (cardβ€˜(harβ€˜π΄)) = (harβ€˜π΄)

Proof of Theorem harcard
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 9554 . 2 (harβ€˜π΄) ∈ On
2 harndom 9557 . . . . . . 7 Β¬ (harβ€˜π΄) β‰Ό 𝐴
3 simpll 766 . . . . . . . . 9 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ π‘₯ ∈ On)
4 simpr 486 . . . . . . . . . . 11 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ 𝑦 ∈ (harβ€˜π΄))
5 elharval 9556 . . . . . . . . . . 11 (𝑦 ∈ (harβ€˜π΄) ↔ (𝑦 ∈ On ∧ 𝑦 β‰Ό 𝐴))
64, 5sylib 217 . . . . . . . . . 10 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ (𝑦 ∈ On ∧ 𝑦 β‰Ό 𝐴))
76simpld 496 . . . . . . . . 9 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ 𝑦 ∈ On)
8 ontri1 6399 . . . . . . . . 9 ((π‘₯ ∈ On ∧ 𝑦 ∈ On) β†’ (π‘₯ βŠ† 𝑦 ↔ Β¬ 𝑦 ∈ π‘₯))
93, 7, 8syl2anc 585 . . . . . . . 8 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ (π‘₯ βŠ† 𝑦 ↔ Β¬ 𝑦 ∈ π‘₯))
10 simpllr 775 . . . . . . . . . 10 ((((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) ∧ π‘₯ βŠ† 𝑦) β†’ (harβ€˜π΄) β‰ˆ π‘₯)
11 ssdomg 8996 . . . . . . . . . . . 12 (𝑦 ∈ V β†’ (π‘₯ βŠ† 𝑦 β†’ π‘₯ β‰Ό 𝑦))
1211elv 3481 . . . . . . . . . . 11 (π‘₯ βŠ† 𝑦 β†’ π‘₯ β‰Ό 𝑦)
136simprd 497 . . . . . . . . . . 11 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ 𝑦 β‰Ό 𝐴)
14 domtr 9003 . . . . . . . . . . 11 ((π‘₯ β‰Ό 𝑦 ∧ 𝑦 β‰Ό 𝐴) β†’ π‘₯ β‰Ό 𝐴)
1512, 13, 14syl2anr 598 . . . . . . . . . 10 ((((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) ∧ π‘₯ βŠ† 𝑦) β†’ π‘₯ β‰Ό 𝐴)
16 endomtr 9008 . . . . . . . . . 10 (((harβ€˜π΄) β‰ˆ π‘₯ ∧ π‘₯ β‰Ό 𝐴) β†’ (harβ€˜π΄) β‰Ό 𝐴)
1710, 15, 16syl2anc 585 . . . . . . . . 9 ((((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) ∧ π‘₯ βŠ† 𝑦) β†’ (harβ€˜π΄) β‰Ό 𝐴)
1817ex 414 . . . . . . . 8 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ (π‘₯ βŠ† 𝑦 β†’ (harβ€˜π΄) β‰Ό 𝐴))
199, 18sylbird 260 . . . . . . 7 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ (Β¬ 𝑦 ∈ π‘₯ β†’ (harβ€˜π΄) β‰Ό 𝐴))
202, 19mt3i 149 . . . . . 6 (((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) ∧ 𝑦 ∈ (harβ€˜π΄)) β†’ 𝑦 ∈ π‘₯)
2120ex 414 . . . . 5 ((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) β†’ (𝑦 ∈ (harβ€˜π΄) β†’ 𝑦 ∈ π‘₯))
2221ssrdv 3989 . . . 4 ((π‘₯ ∈ On ∧ (harβ€˜π΄) β‰ˆ π‘₯) β†’ (harβ€˜π΄) βŠ† π‘₯)
2322ex 414 . . 3 (π‘₯ ∈ On β†’ ((harβ€˜π΄) β‰ˆ π‘₯ β†’ (harβ€˜π΄) βŠ† π‘₯))
2423rgen 3064 . 2 βˆ€π‘₯ ∈ On ((harβ€˜π΄) β‰ˆ π‘₯ β†’ (harβ€˜π΄) βŠ† π‘₯)
25 iscard2 9971 . 2 ((cardβ€˜(harβ€˜π΄)) = (harβ€˜π΄) ↔ ((harβ€˜π΄) ∈ On ∧ βˆ€π‘₯ ∈ On ((harβ€˜π΄) β‰ˆ π‘₯ β†’ (harβ€˜π΄) βŠ† π‘₯)))
261, 24, 25mpbir2an 710 1 (cardβ€˜(harβ€˜π΄)) = (harβ€˜π΄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475   βŠ† wss 3949   class class class wbr 5149  Oncon0 6365  β€˜cfv 6544   β‰ˆ cen 8936   β‰Ό cdom 8937  harchar 9551  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-er 8703  df-en 8940  df-dom 8941  df-oi 9505  df-har 9552  df-card 9934
This theorem is referenced by:  cardprclem  9974  alephcard  10065  pwcfsdom  10578  hargch  10668
  Copyright terms: Public domain W3C validator