MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Structured version   Visualization version   GIF version

Theorem harcard 9868
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard (card‘(har‘𝐴)) = (har‘𝐴)

Proof of Theorem harcard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 9445 . 2 (har‘𝐴) ∈ On
2 harndom 9448 . . . . . . 7 ¬ (har‘𝐴) ≼ 𝐴
3 simpll 766 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On)
4 simpr 484 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴))
5 elharval 9447 . . . . . . . . . . 11 (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
64, 5sylib 218 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
76simpld 494 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On)
8 ontri1 6340 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
93, 7, 8syl2anc 584 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
10 simpllr 775 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≈ 𝑥)
11 ssdomg 8922 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥𝑦𝑥𝑦))
1211elv 3441 . . . . . . . . . . 11 (𝑥𝑦𝑥𝑦)
136simprd 495 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝐴)
14 domtr 8929 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐴) → 𝑥𝐴)
1512, 13, 14syl2anr 597 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → 𝑥𝐴)
16 endomtr 8934 . . . . . . . . . 10 (((har‘𝐴) ≈ 𝑥𝑥𝐴) → (har‘𝐴) ≼ 𝐴)
1710, 15, 16syl2anc 584 . . . . . . . . 9 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≼ 𝐴)
1817ex 412 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 → (har‘𝐴) ≼ 𝐴))
199, 18sylbird 260 . . . . . . 7 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦𝑥 → (har‘𝐴) ≼ 𝐴))
202, 19mt3i 149 . . . . . 6 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝑥)
2120ex 412 . . . . 5 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦𝑥))
2221ssrdv 3940 . . . 4 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥)
2322ex 412 . . 3 (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))
2423rgen 3049 . 2 𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)
25 iscard2 9866 . 2 ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)))
261, 24, 25mpbir2an 711 1 (card‘(har‘𝐴)) = (har‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902   class class class wbr 5091  Oncon0 6306  cfv 6481  cen 8866  cdom 8867  harchar 9442  cardccrd 9825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-en 8870  df-dom 8871  df-oi 9396  df-har 9443  df-card 9829
This theorem is referenced by:  cardprclem  9869  alephcard  9958  pwcfsdom  10471  hargch  10561
  Copyright terms: Public domain W3C validator