MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Structured version   Visualization version   GIF version

Theorem harcard 10018
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard (card‘(har‘𝐴)) = (har‘𝐴)

Proof of Theorem harcard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 9599 . 2 (har‘𝐴) ∈ On
2 harndom 9602 . . . . . . 7 ¬ (har‘𝐴) ≼ 𝐴
3 simpll 767 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On)
4 simpr 484 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴))
5 elharval 9601 . . . . . . . . . . 11 (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
64, 5sylib 218 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
76simpld 494 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On)
8 ontri1 6418 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
93, 7, 8syl2anc 584 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
10 simpllr 776 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≈ 𝑥)
11 ssdomg 9040 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥𝑦𝑥𝑦))
1211elv 3485 . . . . . . . . . . 11 (𝑥𝑦𝑥𝑦)
136simprd 495 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝐴)
14 domtr 9047 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐴) → 𝑥𝐴)
1512, 13, 14syl2anr 597 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → 𝑥𝐴)
16 endomtr 9052 . . . . . . . . . 10 (((har‘𝐴) ≈ 𝑥𝑥𝐴) → (har‘𝐴) ≼ 𝐴)
1710, 15, 16syl2anc 584 . . . . . . . . 9 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≼ 𝐴)
1817ex 412 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 → (har‘𝐴) ≼ 𝐴))
199, 18sylbird 260 . . . . . . 7 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦𝑥 → (har‘𝐴) ≼ 𝐴))
202, 19mt3i 149 . . . . . 6 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝑥)
2120ex 412 . . . . 5 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦𝑥))
2221ssrdv 3989 . . . 4 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥)
2322ex 412 . . 3 (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))
2423rgen 3063 . 2 𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)
25 iscard2 10016 . 2 ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)))
261, 24, 25mpbir2an 711 1 (card‘(har‘𝐴)) = (har‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951   class class class wbr 5143  Oncon0 6384  cfv 6561  cen 8982  cdom 8983  harchar 9596  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-er 8745  df-en 8986  df-dom 8987  df-oi 9550  df-har 9597  df-card 9979
This theorem is referenced by:  cardprclem  10019  alephcard  10110  pwcfsdom  10623  hargch  10713
  Copyright terms: Public domain W3C validator