MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Structured version   Visualization version   GIF version

Theorem harcard 9878
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard (card‘(har‘𝐴)) = (har‘𝐴)

Proof of Theorem harcard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 9452 . 2 (har‘𝐴) ∈ On
2 harndom 9455 . . . . . . 7 ¬ (har‘𝐴) ≼ 𝐴
3 simpll 766 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On)
4 simpr 484 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴))
5 elharval 9454 . . . . . . . . . . 11 (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
64, 5sylib 218 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
76simpld 494 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On)
8 ontri1 6345 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
93, 7, 8syl2anc 584 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
10 simpllr 775 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≈ 𝑥)
11 ssdomg 8929 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥𝑦𝑥𝑦))
1211elv 3442 . . . . . . . . . . 11 (𝑥𝑦𝑥𝑦)
136simprd 495 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝐴)
14 domtr 8936 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐴) → 𝑥𝐴)
1512, 13, 14syl2anr 597 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → 𝑥𝐴)
16 endomtr 8941 . . . . . . . . . 10 (((har‘𝐴) ≈ 𝑥𝑥𝐴) → (har‘𝐴) ≼ 𝐴)
1710, 15, 16syl2anc 584 . . . . . . . . 9 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≼ 𝐴)
1817ex 412 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 → (har‘𝐴) ≼ 𝐴))
199, 18sylbird 260 . . . . . . 7 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦𝑥 → (har‘𝐴) ≼ 𝐴))
202, 19mt3i 149 . . . . . 6 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝑥)
2120ex 412 . . . . 5 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦𝑥))
2221ssrdv 3936 . . . 4 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥)
2322ex 412 . . 3 (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))
2423rgen 3050 . 2 𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)
25 iscard2 9876 . 2 ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)))
261, 24, 25mpbir2an 711 1 (card‘(har‘𝐴)) = (har‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898   class class class wbr 5093  Oncon0 6311  cfv 6486  cen 8872  cdom 8873  harchar 9449  cardccrd 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-er 8628  df-en 8876  df-dom 8877  df-oi 9403  df-har 9450  df-card 9839
This theorem is referenced by:  cardprclem  9879  alephcard  9968  pwcfsdom  10481  hargch  10571
  Copyright terms: Public domain W3C validator