MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Structured version   Visualization version   GIF version

Theorem harcard 9931
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard (card‘(har‘𝐴)) = (har‘𝐴)

Proof of Theorem harcard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 9512 . 2 (har‘𝐴) ∈ On
2 harndom 9515 . . . . . . 7 ¬ (har‘𝐴) ≼ 𝐴
3 simpll 766 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑥 ∈ On)
4 simpr 484 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ (har‘𝐴))
5 elharval 9514 . . . . . . . . . . 11 (𝑦 ∈ (har‘𝐴) ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
64, 5sylib 218 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
76simpld 494 . . . . . . . . 9 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦 ∈ On)
8 ontri1 6366 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
93, 7, 8syl2anc 584 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
10 simpllr 775 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≈ 𝑥)
11 ssdomg 8971 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥𝑦𝑥𝑦))
1211elv 3452 . . . . . . . . . . 11 (𝑥𝑦𝑥𝑦)
136simprd 495 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝐴)
14 domtr 8978 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐴) → 𝑥𝐴)
1512, 13, 14syl2anr 597 . . . . . . . . . 10 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → 𝑥𝐴)
16 endomtr 8983 . . . . . . . . . 10 (((har‘𝐴) ≈ 𝑥𝑥𝐴) → (har‘𝐴) ≼ 𝐴)
1710, 15, 16syl2anc 584 . . . . . . . . 9 ((((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) ∧ 𝑥𝑦) → (har‘𝐴) ≼ 𝐴)
1817ex 412 . . . . . . . 8 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (𝑥𝑦 → (har‘𝐴) ≼ 𝐴))
199, 18sylbird 260 . . . . . . 7 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → (¬ 𝑦𝑥 → (har‘𝐴) ≼ 𝐴))
202, 19mt3i 149 . . . . . 6 (((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) ∧ 𝑦 ∈ (har‘𝐴)) → 𝑦𝑥)
2120ex 412 . . . . 5 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (𝑦 ∈ (har‘𝐴) → 𝑦𝑥))
2221ssrdv 3952 . . . 4 ((𝑥 ∈ On ∧ (har‘𝐴) ≈ 𝑥) → (har‘𝐴) ⊆ 𝑥)
2322ex 412 . . 3 (𝑥 ∈ On → ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥))
2423rgen 3046 . 2 𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)
25 iscard2 9929 . 2 ((card‘(har‘𝐴)) = (har‘𝐴) ↔ ((har‘𝐴) ∈ On ∧ ∀𝑥 ∈ On ((har‘𝐴) ≈ 𝑥 → (har‘𝐴) ⊆ 𝑥)))
261, 24, 25mpbir2an 711 1 (card‘(har‘𝐴)) = (har‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914   class class class wbr 5107  Oncon0 6332  cfv 6511  cen 8915  cdom 8916  harchar 9509  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-dom 8920  df-oi 9463  df-har 9510  df-card 9892
This theorem is referenced by:  cardprclem  9932  alephcard  10023  pwcfsdom  10536  hargch  10626
  Copyright terms: Public domain W3C validator