MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wofib Structured version   Visualization version   GIF version

Theorem wofib 9583
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
wofib.1 𝐴 ∈ V
Assertion
Ref Expression
wofib ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))

Proof of Theorem wofib
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wofi 9323 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
2 cnvso 6310 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 wofi 9323 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
42, 3sylanb 581 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
51, 4jca 511 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑅 We 𝐴𝑅 We 𝐴))
6 weso 5680 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
76adantr 480 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 Or 𝐴)
8 peano2 7913 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
9 sucidg 6467 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
10 vex 3482 . . . . . . . . . . . . 13 𝑧 ∈ V
11 vex 3482 . . . . . . . . . . . . 13 𝑦 ∈ V
1210, 11brcnv 5896 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑦 E 𝑧)
13 epel 5592 . . . . . . . . . . . 12 (𝑦 E 𝑧𝑦𝑧)
1412, 13bitri 275 . . . . . . . . . . 11 (𝑧 E 𝑦𝑦𝑧)
15 eleq2 2828 . . . . . . . . . . 11 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
1614, 15bitrid 283 . . . . . . . . . 10 (𝑧 = suc 𝑦 → (𝑧 E 𝑦𝑦 ∈ suc 𝑦))
1716rspcev 3622 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ 𝑦 ∈ suc 𝑦) → ∃𝑧 ∈ ω 𝑧 E 𝑦)
188, 9, 17syl2anc 584 . . . . . . . 8 (𝑦 ∈ ω → ∃𝑧 ∈ ω 𝑧 E 𝑦)
19 dfrex2 3071 . . . . . . . 8 (∃𝑧 ∈ ω 𝑧 E 𝑦 ↔ ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2018, 19sylib 218 . . . . . . 7 (𝑦 ∈ ω → ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2120nrex 3072 . . . . . 6 ¬ ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦
22 ordom 7897 . . . . . . . 8 Ord ω
23 eqid 2735 . . . . . . . . 9 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
2423oicl 9567 . . . . . . . 8 Ord dom OrdIso(𝑅, 𝐴)
25 ordtri1 6419 . . . . . . . 8 ((Ord ω ∧ Ord dom OrdIso(𝑅, 𝐴)) → (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω))
2622, 24, 25mp2an 692 . . . . . . 7 (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω)
27 wofib.1 . . . . . . . . . . 11 𝐴 ∈ V
2823oion 9574 . . . . . . . . . . 11 (𝐴 ∈ V → dom OrdIso(𝑅, 𝐴) ∈ On)
2927, 28mp1i 13 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ On)
30 simpr 484 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ⊆ dom OrdIso(𝑅, 𝐴))
3129, 30ssexd 5330 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ∈ V)
3223oiiso 9575 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
3327, 32mpan 690 . . . . . . . . . . . 12 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
34 isocnv2 7351 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
3533, 34sylib 218 . . . . . . . . . . 11 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
36 wefr 5679 . . . . . . . . . . 11 (𝑅 We 𝐴𝑅 Fr 𝐴)
37 isofr 7362 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) → ( E Fr dom OrdIso(𝑅, 𝐴) ↔ 𝑅 Fr 𝐴))
3837biimpar 477 . . . . . . . . . . 11 ((OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) ∧ 𝑅 Fr 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
3935, 36, 38syl2an 596 . . . . . . . . . 10 ((𝑅 We 𝐴𝑅 We 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
4039adantr 480 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → E Fr dom OrdIso(𝑅, 𝐴))
41 1onn 8677 . . . . . . . . . 10 1o ∈ ω
42 ne0i 4347 . . . . . . . . . 10 (1o ∈ ω → ω ≠ ∅)
4341, 42mp1i 13 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ≠ ∅)
44 fri 5646 . . . . . . . . 9 (((ω ∈ V ∧ E Fr dom OrdIso(𝑅, 𝐴)) ∧ (ω ⊆ dom OrdIso(𝑅, 𝐴) ∧ ω ≠ ∅)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4531, 40, 30, 43, 44syl22anc 839 . . . . . . . 8 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4645ex 412 . . . . . . 7 ((𝑅 We 𝐴𝑅 We 𝐴) → (ω ⊆ dom OrdIso(𝑅, 𝐴) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4726, 46biimtrrid 243 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → (¬ dom OrdIso(𝑅, 𝐴) ∈ ω → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4821, 47mt3i 149 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ ω)
49 ssid 4018 . . . . 5 dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)
50 ssnnfi 9208 . . . . 5 ((dom OrdIso(𝑅, 𝐴) ∈ ω ∧ dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
5148, 49, 50sylancl 586 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
52 simpl 482 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 We 𝐴)
5323oien 9576 . . . . . 6 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
5427, 52, 53sylancr 587 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
55 enfi 9225 . . . . 5 (dom OrdIso(𝑅, 𝐴) ≈ 𝐴 → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5654, 55syl 17 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5751, 56mpbid 232 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝐴 ∈ Fin)
587, 57jca 511 . 2 ((𝑅 We 𝐴𝑅 We 𝐴) → (𝑅 Or 𝐴𝐴 ∈ Fin))
595, 58impbii 209 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  wss 3963  c0 4339   class class class wbr 5148   E cep 5588   Or wor 5596   Fr wfr 5638   We wwe 5640  ccnv 5688  dom cdm 5689  Ord word 6385  Oncon0 6386  suc csuc 6388   Isom wiso 6564  ωcom 7887  1oc1o 8498  cen 8981  Fincfn 8984  OrdIsocoi 9547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-en 8985  df-fin 8988  df-oi 9548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator