MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wofib Structured version   Visualization version   GIF version

Theorem wofib 9001
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
wofib.1 𝐴 ∈ V
Assertion
Ref Expression
wofib ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))

Proof of Theorem wofib
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wofi 8759 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
2 cnvso 6132 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 wofi 8759 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
42, 3sylanb 583 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
51, 4jca 514 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑅 We 𝐴𝑅 We 𝐴))
6 weso 5539 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
76adantr 483 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 Or 𝐴)
8 peano2 7594 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
9 sucidg 6262 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
10 vex 3496 . . . . . . . . . . . . 13 𝑧 ∈ V
11 vex 3496 . . . . . . . . . . . . 13 𝑦 ∈ V
1210, 11brcnv 5746 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑦 E 𝑧)
13 epel 5462 . . . . . . . . . . . 12 (𝑦 E 𝑧𝑦𝑧)
1412, 13bitri 277 . . . . . . . . . . 11 (𝑧 E 𝑦𝑦𝑧)
15 eleq2 2899 . . . . . . . . . . 11 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
1614, 15syl5bb 285 . . . . . . . . . 10 (𝑧 = suc 𝑦 → (𝑧 E 𝑦𝑦 ∈ suc 𝑦))
1716rspcev 3621 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ 𝑦 ∈ suc 𝑦) → ∃𝑧 ∈ ω 𝑧 E 𝑦)
188, 9, 17syl2anc 586 . . . . . . . 8 (𝑦 ∈ ω → ∃𝑧 ∈ ω 𝑧 E 𝑦)
19 dfrex2 3237 . . . . . . . 8 (∃𝑧 ∈ ω 𝑧 E 𝑦 ↔ ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2018, 19sylib 220 . . . . . . 7 (𝑦 ∈ ω → ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2120nrex 3267 . . . . . 6 ¬ ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦
22 ordom 7581 . . . . . . . 8 Ord ω
23 eqid 2819 . . . . . . . . 9 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
2423oicl 8985 . . . . . . . 8 Ord dom OrdIso(𝑅, 𝐴)
25 ordtri1 6217 . . . . . . . 8 ((Ord ω ∧ Ord dom OrdIso(𝑅, 𝐴)) → (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω))
2622, 24, 25mp2an 690 . . . . . . 7 (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω)
27 wofib.1 . . . . . . . . . . 11 𝐴 ∈ V
2823oion 8992 . . . . . . . . . . 11 (𝐴 ∈ V → dom OrdIso(𝑅, 𝐴) ∈ On)
2927, 28mp1i 13 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ On)
30 simpr 487 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ⊆ dom OrdIso(𝑅, 𝐴))
3129, 30ssexd 5219 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ∈ V)
3223oiiso 8993 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
3327, 32mpan 688 . . . . . . . . . . . 12 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
34 isocnv2 7076 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
3533, 34sylib 220 . . . . . . . . . . 11 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
36 wefr 5538 . . . . . . . . . . 11 (𝑅 We 𝐴𝑅 Fr 𝐴)
37 isofr 7087 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) → ( E Fr dom OrdIso(𝑅, 𝐴) ↔ 𝑅 Fr 𝐴))
3837biimpar 480 . . . . . . . . . . 11 ((OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) ∧ 𝑅 Fr 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
3935, 36, 38syl2an 597 . . . . . . . . . 10 ((𝑅 We 𝐴𝑅 We 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
4039adantr 483 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → E Fr dom OrdIso(𝑅, 𝐴))
41 1onn 8257 . . . . . . . . . 10 1o ∈ ω
42 ne0i 4298 . . . . . . . . . 10 (1o ∈ ω → ω ≠ ∅)
4341, 42mp1i 13 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ≠ ∅)
44 fri 5510 . . . . . . . . 9 (((ω ∈ V ∧ E Fr dom OrdIso(𝑅, 𝐴)) ∧ (ω ⊆ dom OrdIso(𝑅, 𝐴) ∧ ω ≠ ∅)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4531, 40, 30, 43, 44syl22anc 836 . . . . . . . 8 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4645ex 415 . . . . . . 7 ((𝑅 We 𝐴𝑅 We 𝐴) → (ω ⊆ dom OrdIso(𝑅, 𝐴) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4726, 46syl5bir 245 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → (¬ dom OrdIso(𝑅, 𝐴) ∈ ω → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4821, 47mt3i 151 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ ω)
49 ssid 3987 . . . . 5 dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)
50 ssnnfi 8729 . . . . 5 ((dom OrdIso(𝑅, 𝐴) ∈ ω ∧ dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
5148, 49, 50sylancl 588 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
52 simpl 485 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 We 𝐴)
5323oien 8994 . . . . . 6 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
5427, 52, 53sylancr 589 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
55 enfi 8726 . . . . 5 (dom OrdIso(𝑅, 𝐴) ≈ 𝐴 → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5654, 55syl 17 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5751, 56mpbid 234 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝐴 ∈ Fin)
587, 57jca 514 . 2 ((𝑅 We 𝐴𝑅 We 𝐴) → (𝑅 Or 𝐴𝐴 ∈ Fin))
595, 58impbii 211 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1530  wcel 2107  wne 3014  wral 3136  wrex 3137  Vcvv 3493  wss 3934  c0 4289   class class class wbr 5057   E cep 5457   Or wor 5466   Fr wfr 5504   We wwe 5506  ccnv 5547  dom cdm 5548  Ord word 6183  Oncon0 6184  suc csuc 6186   Isom wiso 6349  ωcom 7572  1oc1o 8087  cen 8498  Fincfn 8501  OrdIsocoi 8965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-om 7573  df-wrecs 7939  df-recs 8000  df-1o 8094  df-er 8281  df-en 8502  df-fin 8505  df-oi 8966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator