| Step | Hyp | Ref
| Expression |
| 1 | | wofi 9302 |
. . 3
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) |
| 2 | | cnvso 6282 |
. . . 4
⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
| 3 | | wofi 9302 |
. . . 4
⊢ ((◡𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 We 𝐴) |
| 4 | 2, 3 | sylanb 581 |
. . 3
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 We 𝐴) |
| 5 | 1, 4 | jca 511 |
. 2
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → (𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴)) |
| 6 | | weso 5650 |
. . . 4
⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| 7 | 6 | adantr 480 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → 𝑅 Or 𝐴) |
| 8 | | peano2 7891 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 9 | | sucidg 6440 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦) |
| 10 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 11 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 12 | 10, 11 | brcnv 5867 |
. . . . . . . . . . . 12
⊢ (𝑧◡ E 𝑦 ↔ 𝑦 E 𝑧) |
| 13 | | epel 5561 |
. . . . . . . . . . . 12
⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) |
| 14 | 12, 13 | bitri 275 |
. . . . . . . . . . 11
⊢ (𝑧◡ E 𝑦 ↔ 𝑦 ∈ 𝑧) |
| 15 | | eleq2 2824 |
. . . . . . . . . . 11
⊢ (𝑧 = suc 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦)) |
| 16 | 14, 15 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑧 = suc 𝑦 → (𝑧◡ E
𝑦 ↔ 𝑦 ∈ suc 𝑦)) |
| 17 | 16 | rspcev 3606 |
. . . . . . . . 9
⊢ ((suc
𝑦 ∈ ω ∧
𝑦 ∈ suc 𝑦) → ∃𝑧 ∈ ω 𝑧◡ E 𝑦) |
| 18 | 8, 9, 17 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑦 ∈ ω →
∃𝑧 ∈ ω
𝑧◡ E 𝑦) |
| 19 | | dfrex2 3064 |
. . . . . . . 8
⊢
(∃𝑧 ∈
ω 𝑧◡ E 𝑦 ↔ ¬ ∀𝑧 ∈ ω ¬ 𝑧◡ E
𝑦) |
| 20 | 18, 19 | sylib 218 |
. . . . . . 7
⊢ (𝑦 ∈ ω → ¬
∀𝑧 ∈ ω
¬ 𝑧◡ E 𝑦) |
| 21 | 20 | nrex 3065 |
. . . . . 6
⊢ ¬
∃𝑦 ∈ ω
∀𝑧 ∈ ω
¬ 𝑧◡ E 𝑦 |
| 22 | | ordom 7876 |
. . . . . . . 8
⊢ Ord
ω |
| 23 | | eqid 2736 |
. . . . . . . . 9
⊢
OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴) |
| 24 | 23 | oicl 9548 |
. . . . . . . 8
⊢ Ord dom
OrdIso(𝑅, 𝐴) |
| 25 | | ordtri1 6390 |
. . . . . . . 8
⊢ ((Ord
ω ∧ Ord dom OrdIso(𝑅, 𝐴)) → (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω)) |
| 26 | 22, 24, 25 | mp2an 692 |
. . . . . . 7
⊢ (ω
⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω) |
| 27 | | wofib.1 |
. . . . . . . . . . 11
⊢ 𝐴 ∈ V |
| 28 | 23 | oion 9555 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → dom
OrdIso(𝑅, 𝐴) ∈ On) |
| 29 | 27, 28 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ On) |
| 30 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ⊆ dom OrdIso(𝑅, 𝐴)) |
| 31 | 29, 30 | ssexd 5299 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ∈ V) |
| 32 | 23 | oiiso 9556 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴)) |
| 33 | 27, 32 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴)) |
| 34 | | isocnv2 7329 |
. . . . . . . . . . . 12
⊢
(OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom ◡ E , ◡𝑅(dom OrdIso(𝑅, 𝐴), 𝐴)) |
| 35 | 33, 34 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom ◡ E , ◡𝑅(dom OrdIso(𝑅, 𝐴), 𝐴)) |
| 36 | | wefr 5649 |
. . . . . . . . . . 11
⊢ (◡𝑅 We 𝐴 → ◡𝑅 Fr 𝐴) |
| 37 | | isofr 7340 |
. . . . . . . . . . . 12
⊢
(OrdIso(𝑅, 𝐴) Isom ◡ E , ◡𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) → (◡ E Fr dom OrdIso(𝑅, 𝐴) ↔ ◡𝑅 Fr 𝐴)) |
| 38 | 37 | biimpar 477 |
. . . . . . . . . . 11
⊢
((OrdIso(𝑅, 𝐴) Isom ◡ E , ◡𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) ∧ ◡𝑅 Fr 𝐴) → ◡ E Fr dom OrdIso(𝑅, 𝐴)) |
| 39 | 35, 36, 38 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → ◡ E Fr dom OrdIso(𝑅, 𝐴)) |
| 40 | 39 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ◡ E Fr dom OrdIso(𝑅, 𝐴)) |
| 41 | | 1onn 8657 |
. . . . . . . . . 10
⊢
1o ∈ ω |
| 42 | | ne0i 4321 |
. . . . . . . . . 10
⊢
(1o ∈ ω → ω ≠
∅) |
| 43 | 41, 42 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ≠
∅) |
| 44 | | fri 5616 |
. . . . . . . . 9
⊢
(((ω ∈ V ∧ ◡ E Fr
dom OrdIso(𝑅, 𝐴)) ∧ (ω ⊆ dom
OrdIso(𝑅, 𝐴) ∧ ω ≠ ∅)) →
∃𝑦 ∈ ω
∀𝑧 ∈ ω
¬ 𝑧◡ E 𝑦) |
| 45 | 31, 40, 30, 43, 44 | syl22anc 838 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧◡ E
𝑦) |
| 46 | 45 | ex 412 |
. . . . . . 7
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → (ω ⊆ dom OrdIso(𝑅, 𝐴) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧◡ E
𝑦)) |
| 47 | 26, 46 | biimtrrid 243 |
. . . . . 6
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → (¬ dom OrdIso(𝑅, 𝐴) ∈ ω → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧◡ E 𝑦)) |
| 48 | 21, 47 | mt3i 149 |
. . . . 5
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ ω) |
| 49 | | ssid 3986 |
. . . . 5
⊢ dom
OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴) |
| 50 | | ssnnfi 9188 |
. . . . 5
⊢ ((dom
OrdIso(𝑅, 𝐴) ∈ ω ∧ dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ Fin) |
| 51 | 48, 49, 50 | sylancl 586 |
. . . 4
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ Fin) |
| 52 | | simpl 482 |
. . . . . 6
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → 𝑅 We 𝐴) |
| 53 | 23 | oien 9557 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴) |
| 54 | 27, 52, 53 | sylancr 587 |
. . . . 5
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴) |
| 55 | | enfi 9206 |
. . . . 5
⊢ (dom
OrdIso(𝑅, 𝐴) ≈ 𝐴 → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 56 | 54, 55 | syl 17 |
. . . 4
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 57 | 51, 56 | mpbid 232 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → 𝐴 ∈ Fin) |
| 58 | 7, 57 | jca 511 |
. 2
⊢ ((𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴) → (𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin)) |
| 59 | 5, 58 | impbii 209 |
1
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) ↔ (𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴)) |