MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wofib Structured version   Visualization version   GIF version

Theorem wofib 9438
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
wofib.1 𝐴 ∈ V
Assertion
Ref Expression
wofib ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))

Proof of Theorem wofib
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wofi 9180 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
2 cnvso 6240 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 wofi 9180 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
42, 3sylanb 581 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
51, 4jca 511 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑅 We 𝐴𝑅 We 𝐴))
6 weso 5610 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
76adantr 480 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 Or 𝐴)
8 peano2 7826 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
9 sucidg 6394 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
10 vex 3441 . . . . . . . . . . . . 13 𝑧 ∈ V
11 vex 3441 . . . . . . . . . . . . 13 𝑦 ∈ V
1210, 11brcnv 5826 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑦 E 𝑧)
13 epel 5522 . . . . . . . . . . . 12 (𝑦 E 𝑧𝑦𝑧)
1412, 13bitri 275 . . . . . . . . . . 11 (𝑧 E 𝑦𝑦𝑧)
15 eleq2 2822 . . . . . . . . . . 11 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
1614, 15bitrid 283 . . . . . . . . . 10 (𝑧 = suc 𝑦 → (𝑧 E 𝑦𝑦 ∈ suc 𝑦))
1716rspcev 3573 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ 𝑦 ∈ suc 𝑦) → ∃𝑧 ∈ ω 𝑧 E 𝑦)
188, 9, 17syl2anc 584 . . . . . . . 8 (𝑦 ∈ ω → ∃𝑧 ∈ ω 𝑧 E 𝑦)
19 dfrex2 3060 . . . . . . . 8 (∃𝑧 ∈ ω 𝑧 E 𝑦 ↔ ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2018, 19sylib 218 . . . . . . 7 (𝑦 ∈ ω → ¬ ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
2120nrex 3061 . . . . . 6 ¬ ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦
22 ordom 7812 . . . . . . . 8 Ord ω
23 eqid 2733 . . . . . . . . 9 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
2423oicl 9422 . . . . . . . 8 Ord dom OrdIso(𝑅, 𝐴)
25 ordtri1 6344 . . . . . . . 8 ((Ord ω ∧ Ord dom OrdIso(𝑅, 𝐴)) → (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω))
2622, 24, 25mp2an 692 . . . . . . 7 (ω ⊆ dom OrdIso(𝑅, 𝐴) ↔ ¬ dom OrdIso(𝑅, 𝐴) ∈ ω)
27 wofib.1 . . . . . . . . . . 11 𝐴 ∈ V
2823oion 9429 . . . . . . . . . . 11 (𝐴 ∈ V → dom OrdIso(𝑅, 𝐴) ∈ On)
2927, 28mp1i 13 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ On)
30 simpr 484 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ⊆ dom OrdIso(𝑅, 𝐴))
3129, 30ssexd 5264 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ∈ V)
3223oiiso 9430 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
3327, 32mpan 690 . . . . . . . . . . . 12 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
34 isocnv2 7271 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
3533, 34sylib 218 . . . . . . . . . . 11 (𝑅 We 𝐴 → OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴))
36 wefr 5609 . . . . . . . . . . 11 (𝑅 We 𝐴𝑅 Fr 𝐴)
37 isofr 7282 . . . . . . . . . . . 12 (OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) → ( E Fr dom OrdIso(𝑅, 𝐴) ↔ 𝑅 Fr 𝐴))
3837biimpar 477 . . . . . . . . . . 11 ((OrdIso(𝑅, 𝐴) Isom E , 𝑅(dom OrdIso(𝑅, 𝐴), 𝐴) ∧ 𝑅 Fr 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
3935, 36, 38syl2an 596 . . . . . . . . . 10 ((𝑅 We 𝐴𝑅 We 𝐴) → E Fr dom OrdIso(𝑅, 𝐴))
4039adantr 480 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → E Fr dom OrdIso(𝑅, 𝐴))
41 1onn 8561 . . . . . . . . . 10 1o ∈ ω
42 ne0i 4290 . . . . . . . . . 10 (1o ∈ ω → ω ≠ ∅)
4341, 42mp1i 13 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ω ≠ ∅)
44 fri 5577 . . . . . . . . 9 (((ω ∈ V ∧ E Fr dom OrdIso(𝑅, 𝐴)) ∧ (ω ⊆ dom OrdIso(𝑅, 𝐴) ∧ ω ≠ ∅)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4531, 40, 30, 43, 44syl22anc 838 . . . . . . . 8 (((𝑅 We 𝐴𝑅 We 𝐴) ∧ ω ⊆ dom OrdIso(𝑅, 𝐴)) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦)
4645ex 412 . . . . . . 7 ((𝑅 We 𝐴𝑅 We 𝐴) → (ω ⊆ dom OrdIso(𝑅, 𝐴) → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4726, 46biimtrrid 243 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → (¬ dom OrdIso(𝑅, 𝐴) ∈ ω → ∃𝑦 ∈ ω ∀𝑧 ∈ ω ¬ 𝑧 E 𝑦))
4821, 47mt3i 149 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ ω)
49 ssid 3953 . . . . 5 dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)
50 ssnnfi 9086 . . . . 5 ((dom OrdIso(𝑅, 𝐴) ∈ ω ∧ dom OrdIso(𝑅, 𝐴) ⊆ dom OrdIso(𝑅, 𝐴)) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
5148, 49, 50sylancl 586 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ∈ Fin)
52 simpl 482 . . . . . 6 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝑅 We 𝐴)
5323oien 9431 . . . . . 6 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
5427, 52, 53sylancr 587 . . . . 5 ((𝑅 We 𝐴𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
55 enfi 9103 . . . . 5 (dom OrdIso(𝑅, 𝐴) ≈ 𝐴 → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5654, 55syl 17 . . . 4 ((𝑅 We 𝐴𝑅 We 𝐴) → (dom OrdIso(𝑅, 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin))
5751, 56mpbid 232 . . 3 ((𝑅 We 𝐴𝑅 We 𝐴) → 𝐴 ∈ Fin)
587, 57jca 511 . 2 ((𝑅 We 𝐴𝑅 We 𝐴) → (𝑅 Or 𝐴𝐴 ∈ Fin))
595, 58impbii 209 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) ↔ (𝑅 We 𝐴𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282   class class class wbr 5093   E cep 5518   Or wor 5526   Fr wfr 5569   We wwe 5571  ccnv 5618  dom cdm 5619  Ord word 6310  Oncon0 6311  suc csuc 6313   Isom wiso 6487  ωcom 7802  1oc1o 8384  cen 8872  Fincfn 8875  OrdIsocoi 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-en 8876  df-fin 8879  df-oi 9403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator