| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gzrngunitlem | Structured version Visualization version GIF version | ||
| Description: Lemma for gzrngunit 21357. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| gzrng.1 | ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) |
| Ref | Expression |
|---|---|
| gzrngunitlem | ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 14167 | . . 3 ⊢ (1↑2) = 1 | |
| 2 | ax-1ne0 11144 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 3 | gzsubrg 21345 | . . . . . . 7 ⊢ ℤ[i] ∈ (SubRing‘ℂfld) | |
| 4 | gzrng.1 | . . . . . . . 8 ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) | |
| 5 | 4 | subrgring 20490 | . . . . . . 7 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring) |
| 6 | eqid 2730 | . . . . . . . 8 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 7 | subrgsubg 20493 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] ∈ (SubGrp‘ℂfld)) | |
| 8 | cnfld0 21311 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
| 9 | 4, 8 | subg0 19071 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubGrp‘ℂfld) → 0 = (0g‘𝑍)) |
| 10 | 3, 7, 9 | mp2b 10 | . . . . . . . 8 ⊢ 0 = (0g‘𝑍) |
| 11 | cnfld1 21312 | . . . . . . . . . 10 ⊢ 1 = (1r‘ℂfld) | |
| 12 | 4, 11 | subrg1 20498 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 1 = (1r‘𝑍)) |
| 13 | 3, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 1 = (1r‘𝑍) |
| 14 | 6, 10, 13 | 0unit 20312 | . . . . . . 7 ⊢ (𝑍 ∈ Ring → (0 ∈ (Unit‘𝑍) ↔ 1 = 0)) |
| 15 | 3, 5, 14 | mp2b 10 | . . . . . 6 ⊢ (0 ∈ (Unit‘𝑍) ↔ 1 = 0) |
| 16 | 2, 15 | nemtbir 3022 | . . . . 5 ⊢ ¬ 0 ∈ (Unit‘𝑍) |
| 17 | 4 | subrgbas 20497 | . . . . . . . . . . 11 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍)) |
| 18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ[i] = (Base‘𝑍) |
| 19 | 18, 6 | unitcl 20291 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i]) |
| 20 | gzabssqcl 16919 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) | |
| 21 | 19, 20 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ0) |
| 22 | elnn0 12451 | . . . . . . . 8 ⊢ (((abs‘𝐴)↑2) ∈ ℕ0 ↔ (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) |
| 24 | 23 | ord 864 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → ((abs‘𝐴)↑2) = 0)) |
| 25 | gzcn 16910 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
| 26 | 19, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ) |
| 27 | 26 | abscld 15412 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ) |
| 28 | 27 | recnd 11209 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℂ) |
| 29 | sqeq0 14092 | . . . . . . . 8 ⊢ ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) | |
| 30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) |
| 31 | 26 | abs00ad 15263 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
| 32 | eleq1 2817 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (𝐴 ∈ (Unit‘𝑍) ↔ 0 ∈ (Unit‘𝑍))) | |
| 33 | 32 | biimpcd 249 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (𝐴 = 0 → 0 ∈ (Unit‘𝑍))) |
| 34 | 31, 33 | sylbid 240 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 → 0 ∈ (Unit‘𝑍))) |
| 35 | 30, 34 | sylbid 240 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 → 0 ∈ (Unit‘𝑍))) |
| 36 | 24, 35 | syld 47 | . . . . 5 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → 0 ∈ (Unit‘𝑍))) |
| 37 | 16, 36 | mt3i 149 | . . . 4 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ) |
| 38 | 37 | nnge1d 12241 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘𝐴)↑2)) |
| 39 | 1, 38 | eqbrtrid 5145 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1↑2) ≤ ((abs‘𝐴)↑2)) |
| 40 | 26 | absge0d 15420 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 0 ≤ (abs‘𝐴)) |
| 41 | 1re 11181 | . . . 4 ⊢ 1 ∈ ℝ | |
| 42 | 0le1 11708 | . . . 4 ⊢ 0 ≤ 1 | |
| 43 | le2sq 14106 | . . . 4 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) | |
| 44 | 41, 42, 43 | mpanl12 702 | . . 3 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
| 45 | 27, 40, 44 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
| 46 | 39, 45 | mpbird 257 | 1 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 ≤ cle 11216 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ↑cexp 14033 abscabs 15207 ℤ[i]cgz 16907 Basecbs 17186 ↾s cress 17207 0gc0g 17409 SubGrpcsubg 19059 1rcur 20097 Ringcrg 20149 Unitcui 20271 SubRingcsubrg 20485 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-gz 16908 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-subrng 20462 df-subrg 20486 df-cnfld 21272 |
| This theorem is referenced by: gzrngunit 21357 |
| Copyright terms: Public domain | W3C validator |