| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gzrngunitlem | Structured version Visualization version GIF version | ||
| Description: Lemma for gzrngunit 21376. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| gzrng.1 | ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) |
| Ref | Expression |
|---|---|
| gzrngunitlem | ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 14138 | . . 3 ⊢ (1↑2) = 1 | |
| 2 | ax-1ne0 11115 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 3 | gzsubrg 21364 | . . . . . . 7 ⊢ ℤ[i] ∈ (SubRing‘ℂfld) | |
| 4 | gzrng.1 | . . . . . . . 8 ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) | |
| 5 | 4 | subrgring 20495 | . . . . . . 7 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring) |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 7 | subrgsubg 20498 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] ∈ (SubGrp‘ℂfld)) | |
| 8 | cnfld0 21335 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
| 9 | 4, 8 | subg0 19047 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubGrp‘ℂfld) → 0 = (0g‘𝑍)) |
| 10 | 3, 7, 9 | mp2b 10 | . . . . . . . 8 ⊢ 0 = (0g‘𝑍) |
| 11 | cnfld1 21336 | . . . . . . . . . 10 ⊢ 1 = (1r‘ℂfld) | |
| 12 | 4, 11 | subrg1 20503 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 1 = (1r‘𝑍)) |
| 13 | 3, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 1 = (1r‘𝑍) |
| 14 | 6, 10, 13 | 0unit 20317 | . . . . . . 7 ⊢ (𝑍 ∈ Ring → (0 ∈ (Unit‘𝑍) ↔ 1 = 0)) |
| 15 | 3, 5, 14 | mp2b 10 | . . . . . 6 ⊢ (0 ∈ (Unit‘𝑍) ↔ 1 = 0) |
| 16 | 2, 15 | nemtbir 3021 | . . . . 5 ⊢ ¬ 0 ∈ (Unit‘𝑍) |
| 17 | 4 | subrgbas 20502 | . . . . . . . . . . 11 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍)) |
| 18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ[i] = (Base‘𝑍) |
| 19 | 18, 6 | unitcl 20296 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i]) |
| 20 | gzabssqcl 16889 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) | |
| 21 | 19, 20 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ0) |
| 22 | elnn0 12422 | . . . . . . . 8 ⊢ (((abs‘𝐴)↑2) ∈ ℕ0 ↔ (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) |
| 24 | 23 | ord 864 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → ((abs‘𝐴)↑2) = 0)) |
| 25 | gzcn 16880 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
| 26 | 19, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ) |
| 27 | 26 | abscld 15382 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ) |
| 28 | 27 | recnd 11180 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℂ) |
| 29 | sqeq0 14063 | . . . . . . . 8 ⊢ ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) | |
| 30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) |
| 31 | 26 | abs00ad 15233 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
| 32 | eleq1 2816 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (𝐴 ∈ (Unit‘𝑍) ↔ 0 ∈ (Unit‘𝑍))) | |
| 33 | 32 | biimpcd 249 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (𝐴 = 0 → 0 ∈ (Unit‘𝑍))) |
| 34 | 31, 33 | sylbid 240 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 → 0 ∈ (Unit‘𝑍))) |
| 35 | 30, 34 | sylbid 240 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 → 0 ∈ (Unit‘𝑍))) |
| 36 | 24, 35 | syld 47 | . . . . 5 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → 0 ∈ (Unit‘𝑍))) |
| 37 | 16, 36 | mt3i 149 | . . . 4 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ) |
| 38 | 37 | nnge1d 12212 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘𝐴)↑2)) |
| 39 | 1, 38 | eqbrtrid 5137 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1↑2) ≤ ((abs‘𝐴)↑2)) |
| 40 | 26 | absge0d 15390 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 0 ≤ (abs‘𝐴)) |
| 41 | 1re 11152 | . . . 4 ⊢ 1 ∈ ℝ | |
| 42 | 0le1 11679 | . . . 4 ⊢ 0 ≤ 1 | |
| 43 | le2sq 14077 | . . . 4 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) | |
| 44 | 41, 42, 43 | mpanl12 702 | . . 3 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
| 45 | 27, 40, 44 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
| 46 | 39, 45 | mpbird 257 | 1 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 ℝcr 11045 0cc0 11046 1c1 11047 ≤ cle 11187 ℕcn 12164 2c2 12219 ℕ0cn0 12420 ↑cexp 14004 abscabs 15177 ℤ[i]cgz 16877 Basecbs 17156 ↾s cress 17177 0gc0g 17379 SubGrpcsubg 19035 1rcur 20102 Ringcrg 20154 Unitcui 20276 SubRingcsubrg 20490 ℂfldccnfld 21297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-rp 12930 df-fz 13447 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-gz 16878 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17381 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-subg 19038 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-cring 20157 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-subrng 20467 df-subrg 20491 df-cnfld 21298 |
| This theorem is referenced by: gzrngunit 21376 |
| Copyright terms: Public domain | W3C validator |