![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gzrngunitlem | Structured version Visualization version GIF version |
Description: Lemma for gzrngunit 21468. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
gzrng.1 | ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) |
Ref | Expression |
---|---|
gzrngunitlem | ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 14230 | . . 3 ⊢ (1↑2) = 1 | |
2 | ax-1ne0 11221 | . . . . . 6 ⊢ 1 ≠ 0 | |
3 | gzsubrg 21456 | . . . . . . 7 ⊢ ℤ[i] ∈ (SubRing‘ℂfld) | |
4 | gzrng.1 | . . . . . . . 8 ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) | |
5 | 4 | subrgring 20590 | . . . . . . 7 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring) |
6 | eqid 2734 | . . . . . . . 8 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
7 | subrgsubg 20593 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] ∈ (SubGrp‘ℂfld)) | |
8 | cnfld0 21422 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
9 | 4, 8 | subg0 19162 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubGrp‘ℂfld) → 0 = (0g‘𝑍)) |
10 | 3, 7, 9 | mp2b 10 | . . . . . . . 8 ⊢ 0 = (0g‘𝑍) |
11 | cnfld1 21423 | . . . . . . . . . 10 ⊢ 1 = (1r‘ℂfld) | |
12 | 4, 11 | subrg1 20598 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 1 = (1r‘𝑍)) |
13 | 3, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 1 = (1r‘𝑍) |
14 | 6, 10, 13 | 0unit 20412 | . . . . . . 7 ⊢ (𝑍 ∈ Ring → (0 ∈ (Unit‘𝑍) ↔ 1 = 0)) |
15 | 3, 5, 14 | mp2b 10 | . . . . . 6 ⊢ (0 ∈ (Unit‘𝑍) ↔ 1 = 0) |
16 | 2, 15 | nemtbir 3035 | . . . . 5 ⊢ ¬ 0 ∈ (Unit‘𝑍) |
17 | 4 | subrgbas 20597 | . . . . . . . . . . 11 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍)) |
18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ[i] = (Base‘𝑍) |
19 | 18, 6 | unitcl 20391 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i]) |
20 | gzabssqcl 16974 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) | |
21 | 19, 20 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ0) |
22 | elnn0 12525 | . . . . . . . 8 ⊢ (((abs‘𝐴)↑2) ∈ ℕ0 ↔ (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) | |
23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) |
24 | 23 | ord 864 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → ((abs‘𝐴)↑2) = 0)) |
25 | gzcn 16965 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
26 | 19, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ) |
27 | 26 | abscld 15471 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ) |
28 | 27 | recnd 11286 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℂ) |
29 | sqeq0 14156 | . . . . . . . 8 ⊢ ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) | |
30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) |
31 | 26 | abs00ad 15325 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
32 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (𝐴 ∈ (Unit‘𝑍) ↔ 0 ∈ (Unit‘𝑍))) | |
33 | 32 | biimpcd 249 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (𝐴 = 0 → 0 ∈ (Unit‘𝑍))) |
34 | 31, 33 | sylbid 240 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 → 0 ∈ (Unit‘𝑍))) |
35 | 30, 34 | sylbid 240 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 → 0 ∈ (Unit‘𝑍))) |
36 | 24, 35 | syld 47 | . . . . 5 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → 0 ∈ (Unit‘𝑍))) |
37 | 16, 36 | mt3i 149 | . . . 4 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ) |
38 | 37 | nnge1d 12311 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘𝐴)↑2)) |
39 | 1, 38 | eqbrtrid 5182 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1↑2) ≤ ((abs‘𝐴)↑2)) |
40 | 26 | absge0d 15479 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 0 ≤ (abs‘𝐴)) |
41 | 1re 11258 | . . . 4 ⊢ 1 ∈ ℝ | |
42 | 0le1 11783 | . . . 4 ⊢ 0 ≤ 1 | |
43 | le2sq 14170 | . . . 4 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) | |
44 | 41, 42, 43 | mpanl12 702 | . . 3 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
45 | 27, 40, 44 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
46 | 39, 45 | mpbird 257 | 1 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 1c1 11153 ≤ cle 11293 ℕcn 12263 2c2 12318 ℕ0cn0 12523 ↑cexp 14098 abscabs 15269 ℤ[i]cgz 16962 Basecbs 17244 ↾s cress 17273 0gc0g 17485 SubGrpcsubg 19150 1rcur 20198 Ringcrg 20250 Unitcui 20371 SubRingcsubrg 20585 ℂfldccnfld 21381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-rp 13032 df-fz 13544 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-gz 16963 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-subg 19153 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-subrng 20562 df-subrg 20586 df-cnfld 21382 |
This theorem is referenced by: gzrngunit 21468 |
Copyright terms: Public domain | W3C validator |