| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gzrngunitlem | Structured version Visualization version GIF version | ||
| Description: Lemma for gzrngunit 21370. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| gzrng.1 | ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) |
| Ref | Expression |
|---|---|
| gzrngunitlem | ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 14102 | . . 3 ⊢ (1↑2) = 1 | |
| 2 | ax-1ne0 11075 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 3 | gzsubrg 21358 | . . . . . . 7 ⊢ ℤ[i] ∈ (SubRing‘ℂfld) | |
| 4 | gzrng.1 | . . . . . . . 8 ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) | |
| 5 | 4 | subrgring 20489 | . . . . . . 7 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring) |
| 6 | eqid 2731 | . . . . . . . 8 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 7 | subrgsubg 20492 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] ∈ (SubGrp‘ℂfld)) | |
| 8 | cnfld0 21329 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
| 9 | 4, 8 | subg0 19045 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubGrp‘ℂfld) → 0 = (0g‘𝑍)) |
| 10 | 3, 7, 9 | mp2b 10 | . . . . . . . 8 ⊢ 0 = (0g‘𝑍) |
| 11 | cnfld1 21330 | . . . . . . . . . 10 ⊢ 1 = (1r‘ℂfld) | |
| 12 | 4, 11 | subrg1 20497 | . . . . . . . . 9 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → 1 = (1r‘𝑍)) |
| 13 | 3, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 1 = (1r‘𝑍) |
| 14 | 6, 10, 13 | 0unit 20314 | . . . . . . 7 ⊢ (𝑍 ∈ Ring → (0 ∈ (Unit‘𝑍) ↔ 1 = 0)) |
| 15 | 3, 5, 14 | mp2b 10 | . . . . . 6 ⊢ (0 ∈ (Unit‘𝑍) ↔ 1 = 0) |
| 16 | 2, 15 | nemtbir 3024 | . . . . 5 ⊢ ¬ 0 ∈ (Unit‘𝑍) |
| 17 | 4 | subrgbas 20496 | . . . . . . . . . . 11 ⊢ (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍)) |
| 18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ[i] = (Base‘𝑍) |
| 19 | 18, 6 | unitcl 20293 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i]) |
| 20 | gzabssqcl 16853 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) | |
| 21 | 19, 20 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ0) |
| 22 | elnn0 12383 | . . . . . . . 8 ⊢ (((abs‘𝐴)↑2) ∈ ℕ0 ↔ (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0)) |
| 24 | 23 | ord 864 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → ((abs‘𝐴)↑2) = 0)) |
| 25 | gzcn 16844 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
| 26 | 19, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ) |
| 27 | 26 | abscld 15346 | . . . . . . . . 9 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ) |
| 28 | 27 | recnd 11140 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℂ) |
| 29 | sqeq0 14027 | . . . . . . . 8 ⊢ ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) | |
| 30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0)) |
| 31 | 26 | abs00ad 15197 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
| 32 | eleq1 2819 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (𝐴 ∈ (Unit‘𝑍) ↔ 0 ∈ (Unit‘𝑍))) | |
| 33 | 32 | biimpcd 249 | . . . . . . . 8 ⊢ (𝐴 ∈ (Unit‘𝑍) → (𝐴 = 0 → 0 ∈ (Unit‘𝑍))) |
| 34 | 31, 33 | sylbid 240 | . . . . . . 7 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 → 0 ∈ (Unit‘𝑍))) |
| 35 | 30, 34 | sylbid 240 | . . . . . 6 ⊢ (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 → 0 ∈ (Unit‘𝑍))) |
| 36 | 24, 35 | syld 47 | . . . . 5 ⊢ (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → 0 ∈ (Unit‘𝑍))) |
| 37 | 16, 36 | mt3i 149 | . . . 4 ⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ) |
| 38 | 37 | nnge1d 12173 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘𝐴)↑2)) |
| 39 | 1, 38 | eqbrtrid 5124 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1↑2) ≤ ((abs‘𝐴)↑2)) |
| 40 | 26 | absge0d 15354 | . . 3 ⊢ (𝐴 ∈ (Unit‘𝑍) → 0 ≤ (abs‘𝐴)) |
| 41 | 1re 11112 | . . . 4 ⊢ 1 ∈ ℝ | |
| 42 | 0le1 11640 | . . . 4 ⊢ 0 ≤ 1 | |
| 43 | le2sq 14041 | . . . 4 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) | |
| 44 | 41, 42, 43 | mpanl12 702 | . . 3 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
| 45 | 27, 40, 44 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (Unit‘𝑍) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2))) |
| 46 | 39, 45 | mpbird 257 | 1 ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ≤ cle 11147 ℕcn 12125 2c2 12180 ℕ0cn0 12381 ↑cexp 13968 abscabs 15141 ℤ[i]cgz 16841 Basecbs 17120 ↾s cress 17141 0gc0g 17343 SubGrpcsubg 19033 1rcur 20099 Ringcrg 20151 Unitcui 20273 SubRingcsubrg 20484 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-gz 16842 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-subrng 20461 df-subrg 20485 df-cnfld 21292 |
| This theorem is referenced by: gzrngunit 21370 |
| Copyright terms: Public domain | W3C validator |