MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt6abl Structured version   Visualization version   GIF version

Theorem lt6abl 19083
Description: A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
lt6abl ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)

Proof of Theorem lt6abl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . . . . 7 𝐵 = (Base‘𝐺)
21grpbn0 18199 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
32adantr 484 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ≠ ∅)
4 6re 11764 . . . . . . . 8 6 ∈ ℝ
5 rexr 10725 . . . . . . . 8 (6 ∈ ℝ → 6 ∈ ℝ*)
6 pnfnlt 12564 . . . . . . . 8 (6 ∈ ℝ* → ¬ +∞ < 6)
74, 5, 6mp2b 10 . . . . . . 7 ¬ +∞ < 6
81fvexi 6672 . . . . . . . . . . . 12 𝐵 ∈ V
98a1i 11 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐵 ∈ V)
10 hashinf 13745 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
119, 10sylan 583 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1211breq1d 5042 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 ↔ +∞ < 6))
1312biimpd 232 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 → +∞ < 6))
1413impancom 455 . . . . . . 7 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (¬ 𝐵 ∈ Fin → +∞ < 6))
157, 14mt3i 151 . . . . . 6 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ∈ Fin)
16 hashnncl 13777 . . . . . 6 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1715, 16syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
183, 17mpbird 260 . . . 4 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ ℕ)
19 nnuz 12321 . . . 4 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2862 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (ℤ‘1))
21 6nn 11763 . . . . 5 6 ∈ ℕ
2221nnzi 12045 . . . 4 6 ∈ ℤ
2322a1i 11 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 6 ∈ ℤ)
24 simpr 488 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) < 6)
25 elfzo2 13090 . . 3 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (ℤ‘1) ∧ 6 ∈ ℤ ∧ (♯‘𝐵) < 6))
2620, 23, 24, 25syl3anbrc 1340 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (1..^6))
27 df-6 11741 . . . . . . 7 6 = (5 + 1)
2827oveq2i 7161 . . . . . 6 (1..^6) = (1..^(5 + 1))
2928eleq2i 2843 . . . . 5 ((♯‘𝐵) ∈ (1..^6) ↔ (♯‘𝐵) ∈ (1..^(5 + 1)))
30 5nn 11760 . . . . . . 7 5 ∈ ℕ
3130, 19eleqtri 2850 . . . . . 6 5 ∈ (ℤ‘1)
32 fzosplitsni 13197 . . . . . 6 (5 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)))
3331, 32ax-mp 5 . . . . 5 ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
3429, 33bitri 278 . . . 4 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
35 df-5 11740 . . . . . . . . 9 5 = (4 + 1)
3635oveq2i 7161 . . . . . . . 8 (1..^5) = (1..^(4 + 1))
3736eleq2i 2843 . . . . . . 7 ((♯‘𝐵) ∈ (1..^5) ↔ (♯‘𝐵) ∈ (1..^(4 + 1)))
38 4nn 11757 . . . . . . . . 9 4 ∈ ℕ
3938, 19eleqtri 2850 . . . . . . . 8 4 ∈ (ℤ‘1)
40 fzosplitsni 13197 . . . . . . . 8 (4 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)))
4139, 40ax-mp 5 . . . . . . 7 ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
4237, 41bitri 278 . . . . . 6 ((♯‘𝐵) ∈ (1..^5) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
43 df-4 11739 . . . . . . . . . . 11 4 = (3 + 1)
4443oveq2i 7161 . . . . . . . . . 10 (1..^4) = (1..^(3 + 1))
4544eleq2i 2843 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^4) ↔ (♯‘𝐵) ∈ (1..^(3 + 1)))
46 3nn 11753 . . . . . . . . . . 11 3 ∈ ℕ
4746, 19eleqtri 2850 . . . . . . . . . 10 3 ∈ (ℤ‘1)
48 fzosplitsni 13197 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)))
4947, 48ax-mp 5 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
5045, 49bitri 278 . . . . . . . 8 ((♯‘𝐵) ∈ (1..^4) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
51 df-3 11738 . . . . . . . . . . . . 13 3 = (2 + 1)
5251oveq2i 7161 . . . . . . . . . . . 12 (1..^3) = (1..^(2 + 1))
5352eleq2i 2843 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^3) ↔ (♯‘𝐵) ∈ (1..^(2 + 1)))
54 2eluzge1 12334 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
55 fzosplitsni 13197 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)))
5654, 55ax-mp 5 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
5753, 56bitri 278 . . . . . . . . . 10 ((♯‘𝐵) ∈ (1..^3) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
58 elsni 4539 . . . . . . . . . . . . . . . . 17 ((♯‘𝐵) ∈ {1} → (♯‘𝐵) = 1)
59 fzo12sn 13169 . . . . . . . . . . . . . . . . 17 (1..^2) = {1}
6058, 59eleq2s 2870 . . . . . . . . . . . . . . . 16 ((♯‘𝐵) ∈ (1..^2) → (♯‘𝐵) = 1)
6160adantl 485 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = 1)
62 hash1 13815 . . . . . . . . . . . . . . 15 (♯‘1o) = 1
6361, 62eqtr4di 2811 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = (♯‘1o))
64 1nn0 11950 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
6561, 64eqeltrdi 2860 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) ∈ ℕ0)
66 hashclb 13769 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
678, 66ax-mp 5 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
6865, 67sylibr 237 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ∈ Fin)
69 1onn 8275 . . . . . . . . . . . . . . . 16 1o ∈ ω
70 nnfi 8750 . . . . . . . . . . . . . . . 16 (1o ∈ ω → 1o ∈ Fin)
7169, 70ax-mp 5 . . . . . . . . . . . . . . 15 1o ∈ Fin
72 hashen 13757 . . . . . . . . . . . . . . 15 ((𝐵 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7368, 71, 72sylancl 589 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7463, 73mpbid 235 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ≈ 1o)
7510cyg 19081 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp)
76 cygabl 19078 . . . . . . . . . . . . . 14 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
7775, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Abel)
7874, 77syldan 594 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐺 ∈ Abel)
7978ex 416 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^2) → 𝐺 ∈ Abel))
80 id 22 . . . . . . . . . . . . 13 ((♯‘𝐵) = 2 → (♯‘𝐵) = 2)
81 2prm 16088 . . . . . . . . . . . . 13 2 ∈ ℙ
8280, 81eqeltrdi 2860 . . . . . . . . . . . 12 ((♯‘𝐵) = 2 → (♯‘𝐵) ∈ ℙ)
831prmcyg 19082 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)
8483, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ Abel)
8584ex 416 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ ℙ → 𝐺 ∈ Abel))
8682, 85syl5 34 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) = 2 → 𝐺 ∈ Abel))
8779, 86jaod 856 . . . . . . . . . 10 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2) → 𝐺 ∈ Abel))
8857, 87syl5bi 245 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^3) → 𝐺 ∈ Abel))
89 id 22 . . . . . . . . . . 11 ((♯‘𝐵) = 3 → (♯‘𝐵) = 3)
90 3prm 16090 . . . . . . . . . . 11 3 ∈ ℙ
9189, 90eqeltrdi 2860 . . . . . . . . . 10 ((♯‘𝐵) = 3 → (♯‘𝐵) ∈ ℙ)
9291, 85syl5 34 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) = 3 → 𝐺 ∈ Abel))
9388, 92jaod 856 . . . . . . . 8 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3) → 𝐺 ∈ Abel))
9450, 93syl5bi 245 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^4) → 𝐺 ∈ Abel))
95 simpl 486 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Grp)
96 2z 12053 . . . . . . . . . . 11 2 ∈ ℤ
97 eqid 2758 . . . . . . . . . . . 12 (gEx‘𝐺) = (gEx‘𝐺)
98 eqid 2758 . . . . . . . . . . . 12 (od‘𝐺) = (od‘𝐺)
991, 97, 98gexdvds2 18777 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 2 ∈ ℤ) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
10095, 96, 99sylancl 589 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
1011, 97gex2abl 19039 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (gEx‘𝐺) ∥ 2) → 𝐺 ∈ Abel)
102101ex 416 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
103102adantr 484 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
104100, 103sylbird 263 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
105 rexnal 3165 . . . . . . . . . 10 (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 ↔ ¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2)
10695adantr 484 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Grp)
107 simprl 770 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝑥𝐵)
1081, 98odcl 18731 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → ((od‘𝐺)‘𝑥) ∈ ℕ0)
109108ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
110 4nn0 11953 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
111110a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∈ ℕ0)
112 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) = 4)
113112, 110eqeltrdi 2860 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) ∈ ℕ0)
114113, 67sylibr 237 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐵 ∈ Fin)
115114adantr 484 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐵 ∈ Fin)
1161, 98oddvds2 18760 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
117106, 115, 107, 116syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
118112adantr 484 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (♯‘𝐵) = 4)
119117, 118breqtrd 5058 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ 4)
120 sq2 13610 . . . . . . . . . . . . . . . . 17 (2↑2) = 4
121 2nn0 11951 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
12296a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ∈ ℤ)
1231, 98odcl2 18759 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ)
124106, 115, 107, 123syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ)
125 pccl 16241 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
12681, 124, 125sylancr 590 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
127126nn0zd 12124 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ)
128 df-2 11737 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
129 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ ((od‘𝐺)‘𝑥) ∥ 2)
130 dvdsexp 15729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0 ∧ 1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥)))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))
1311303expia 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
13296, 126, 131sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
133 1z 12051 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℤ
134 eluz 12296 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 1 ∈ ℤ) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
135127, 133, 134sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
136 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 2 → (2↑𝑛) = (2↑2))
137136, 120eqtrdi 2809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 2 → (2↑𝑛) = 4)
138137breq2d 5044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 2 → (((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ 4))
139138rspcev 3541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ 4) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
140121, 119, 139sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
141 pcprmpw2 16273 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
14281, 124, 141sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
143140, 142mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
144143eqcomd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) = ((od‘𝐺)‘𝑥))
145 2cn 11749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
146 exp1 13485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → (2↑1) = 2)
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2↑1) = 2
148147a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑1) = 2)
149144, 148breq12d 5045 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1) ↔ ((od‘𝐺)‘𝑥) ∥ 2))
150132, 135, 1493imtr3d 296 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1 → ((od‘𝐺)‘𝑥) ∥ 2))
151129, 150mtod 201 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1)
152 1re 10679 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
153126nn0red 11995 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ)
154 ltnle 10758 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
155152, 153, 154sylancr 590 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
156151, 155mpbird 260 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 1 < (2 pCnt ((od‘𝐺)‘𝑥)))
157 nn0ltp1le 12079 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
15864, 126, 157sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
159156, 158mpbid 235 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
160128, 159eqbrtrid 5067 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
161 eluz2 12288 . . . . . . . . . . . . . . . . . . 19 ((2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
162122, 127, 160, 161syl3anbrc 1340 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2))
163 dvdsexp 15729 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
16496, 121, 162, 163mp3an12i 1462 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
165120, 164eqbrtrrid 5068 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
166165, 143breqtrrd 5060 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ ((od‘𝐺)‘𝑥))
167 dvdseq 15715 . . . . . . . . . . . . . . 15 (((((od‘𝐺)‘𝑥) ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (((od‘𝐺)‘𝑥) ∥ 4 ∧ 4 ∥ ((od‘𝐺)‘𝑥))) → ((od‘𝐺)‘𝑥) = 4)
168109, 111, 119, 166, 167syl22anc 837 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = 4)
169168, 118eqtr4d 2796 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (♯‘𝐵))
1701, 98, 106, 107, 169iscygodd 19075 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ CycGrp)
171170, 76syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Abel)
172171rexlimdvaa 3209 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
173105, 172syl5bir 246 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
174104, 173pm2.61d 182 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Abel)
175174ex 416 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) = 4 → 𝐺 ∈ Abel))
17694, 175jaod 856 . . . . . 6 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4) → 𝐺 ∈ Abel))
17742, 176syl5bi 245 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^5) → 𝐺 ∈ Abel))
178 id 22 . . . . . . 7 ((♯‘𝐵) = 5 → (♯‘𝐵) = 5)
179 5prm 16500 . . . . . . 7 5 ∈ ℙ
180178, 179eqeltrdi 2860 . . . . . 6 ((♯‘𝐵) = 5 → (♯‘𝐵) ∈ ℙ)
181180, 85syl5 34 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) = 5 → 𝐺 ∈ Abel))
182177, 181jaod 856 . . . 4 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5) → 𝐺 ∈ Abel))
18334, 182syl5bi 245 . . 3 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^6) → 𝐺 ∈ Abel))
184183imp 410 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^6)) → 𝐺 ∈ Abel)
18526, 184syldan 594 1 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  Vcvv 3409  c0 4225  {csn 4522   class class class wbr 5032  cfv 6335  (class class class)co 7150  ωcom 7579  1oc1o 8105  cen 8524  Fincfn 8527  cc 10573  cr 10574  1c1 10576   + caddc 10578  +∞cpnf 10710  *cxr 10712   < clt 10713  cle 10714  cn 11674  2c2 11729  3c3 11730  4c4 11731  5c5 11732  6c6 11733  0cn0 11934  cz 12020  cuz 12282  ..^cfzo 13082  cexp 13479  chash 13740  cdvds 15655  cprime 16067   pCnt cpc 16228  Basecbs 16541  Grpcgrp 18169  odcod 18719  gExcgex 18720  Abelcabl 18974  CycGrpccyg 19064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-disj 4998  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-omul 8117  df-er 8299  df-ec 8301  df-qs 8305  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-oi 9007  df-dju 9363  df-card 9401  df-acn 9404  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-dvds 15656  df-gcd 15894  df-prm 16068  df-pc 16229  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-subg 18343  df-eqg 18345  df-od 18723  df-gex 18724  df-cmn 18975  df-abl 18976  df-cyg 19065
This theorem is referenced by:  pgrple2abl  45134
  Copyright terms: Public domain W3C validator