MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt6abl Structured version   Visualization version   GIF version

Theorem lt6abl 19807
Description: A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
lt6abl ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)

Proof of Theorem lt6abl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . . . . 7 𝐵 = (Base‘𝐺)
21grpbn0 18879 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
32adantr 480 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ≠ ∅)
4 6re 12215 . . . . . . . 8 6 ∈ ℝ
5 rexr 11158 . . . . . . . 8 (6 ∈ ℝ → 6 ∈ ℝ*)
6 pnfnlt 13027 . . . . . . . 8 (6 ∈ ℝ* → ¬ +∞ < 6)
74, 5, 6mp2b 10 . . . . . . 7 ¬ +∞ < 6
81fvexi 6836 . . . . . . . . . . . 12 𝐵 ∈ V
98a1i 11 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐵 ∈ V)
10 hashinf 14242 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
119, 10sylan 580 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1211breq1d 5099 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 ↔ +∞ < 6))
1312biimpd 229 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 → +∞ < 6))
1413impancom 451 . . . . . . 7 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (¬ 𝐵 ∈ Fin → +∞ < 6))
157, 14mt3i 149 . . . . . 6 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ∈ Fin)
16 hashnncl 14273 . . . . . 6 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1715, 16syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
183, 17mpbird 257 . . . 4 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ ℕ)
19 nnuz 12775 . . . 4 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2841 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (ℤ‘1))
21 6nn 12214 . . . . 5 6 ∈ ℕ
2221nnzi 12496 . . . 4 6 ∈ ℤ
2322a1i 11 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 6 ∈ ℤ)
24 simpr 484 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) < 6)
25 elfzo2 13562 . . 3 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (ℤ‘1) ∧ 6 ∈ ℤ ∧ (♯‘𝐵) < 6))
2620, 23, 24, 25syl3anbrc 1344 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (1..^6))
27 df-6 12192 . . . . . . 7 6 = (5 + 1)
2827oveq2i 7357 . . . . . 6 (1..^6) = (1..^(5 + 1))
2928eleq2i 2823 . . . . 5 ((♯‘𝐵) ∈ (1..^6) ↔ (♯‘𝐵) ∈ (1..^(5 + 1)))
30 5nn 12211 . . . . . . 7 5 ∈ ℕ
3130, 19eleqtri 2829 . . . . . 6 5 ∈ (ℤ‘1)
32 fzosplitsni 13679 . . . . . 6 (5 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)))
3331, 32ax-mp 5 . . . . 5 ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
3429, 33bitri 275 . . . 4 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
35 df-5 12191 . . . . . . . . 9 5 = (4 + 1)
3635oveq2i 7357 . . . . . . . 8 (1..^5) = (1..^(4 + 1))
3736eleq2i 2823 . . . . . . 7 ((♯‘𝐵) ∈ (1..^5) ↔ (♯‘𝐵) ∈ (1..^(4 + 1)))
38 4nn 12208 . . . . . . . . 9 4 ∈ ℕ
3938, 19eleqtri 2829 . . . . . . . 8 4 ∈ (ℤ‘1)
40 fzosplitsni 13679 . . . . . . . 8 (4 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)))
4139, 40ax-mp 5 . . . . . . 7 ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
4237, 41bitri 275 . . . . . 6 ((♯‘𝐵) ∈ (1..^5) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
43 df-4 12190 . . . . . . . . . . 11 4 = (3 + 1)
4443oveq2i 7357 . . . . . . . . . 10 (1..^4) = (1..^(3 + 1))
4544eleq2i 2823 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^4) ↔ (♯‘𝐵) ∈ (1..^(3 + 1)))
46 3nn 12204 . . . . . . . . . . 11 3 ∈ ℕ
4746, 19eleqtri 2829 . . . . . . . . . 10 3 ∈ (ℤ‘1)
48 fzosplitsni 13679 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)))
4947, 48ax-mp 5 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
5045, 49bitri 275 . . . . . . . 8 ((♯‘𝐵) ∈ (1..^4) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
51 df-3 12189 . . . . . . . . . . . . 13 3 = (2 + 1)
5251oveq2i 7357 . . . . . . . . . . . 12 (1..^3) = (1..^(2 + 1))
5352eleq2i 2823 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^3) ↔ (♯‘𝐵) ∈ (1..^(2 + 1)))
54 2eluzge1 12780 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
55 fzosplitsni 13679 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)))
5654, 55ax-mp 5 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
5753, 56bitri 275 . . . . . . . . . 10 ((♯‘𝐵) ∈ (1..^3) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
58 elsni 4590 . . . . . . . . . . . . . . . . 17 ((♯‘𝐵) ∈ {1} → (♯‘𝐵) = 1)
59 fzo12sn 13648 . . . . . . . . . . . . . . . . 17 (1..^2) = {1}
6058, 59eleq2s 2849 . . . . . . . . . . . . . . . 16 ((♯‘𝐵) ∈ (1..^2) → (♯‘𝐵) = 1)
6160adantl 481 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = 1)
62 hash1 14311 . . . . . . . . . . . . . . 15 (♯‘1o) = 1
6361, 62eqtr4di 2784 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = (♯‘1o))
64 1nn0 12397 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
6561, 64eqeltrdi 2839 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) ∈ ℕ0)
66 hashclb 14265 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
678, 66ax-mp 5 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
6865, 67sylibr 234 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ∈ Fin)
69 1onn 8555 . . . . . . . . . . . . . . . 16 1o ∈ ω
70 nnfi 9077 . . . . . . . . . . . . . . . 16 (1o ∈ ω → 1o ∈ Fin)
7169, 70ax-mp 5 . . . . . . . . . . . . . . 15 1o ∈ Fin
72 hashen 14254 . . . . . . . . . . . . . . 15 ((𝐵 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7368, 71, 72sylancl 586 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7463, 73mpbid 232 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ≈ 1o)
7510cyg 19805 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp)
76 cygabl 19803 . . . . . . . . . . . . . 14 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
7775, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Abel)
7874, 77syldan 591 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐺 ∈ Abel)
7978ex 412 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^2) → 𝐺 ∈ Abel))
80 id 22 . . . . . . . . . . . . 13 ((♯‘𝐵) = 2 → (♯‘𝐵) = 2)
81 2prm 16603 . . . . . . . . . . . . 13 2 ∈ ℙ
8280, 81eqeltrdi 2839 . . . . . . . . . . . 12 ((♯‘𝐵) = 2 → (♯‘𝐵) ∈ ℙ)
831prmcyg 19806 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)
8483, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ Abel)
8584ex 412 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ ℙ → 𝐺 ∈ Abel))
8682, 85syl5 34 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) = 2 → 𝐺 ∈ Abel))
8779, 86jaod 859 . . . . . . . . . 10 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2) → 𝐺 ∈ Abel))
8857, 87biimtrid 242 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^3) → 𝐺 ∈ Abel))
89 id 22 . . . . . . . . . . 11 ((♯‘𝐵) = 3 → (♯‘𝐵) = 3)
90 3prm 16605 . . . . . . . . . . 11 3 ∈ ℙ
9189, 90eqeltrdi 2839 . . . . . . . . . 10 ((♯‘𝐵) = 3 → (♯‘𝐵) ∈ ℙ)
9291, 85syl5 34 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) = 3 → 𝐺 ∈ Abel))
9388, 92jaod 859 . . . . . . . 8 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3) → 𝐺 ∈ Abel))
9450, 93biimtrid 242 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^4) → 𝐺 ∈ Abel))
95 simpl 482 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Grp)
96 2z 12504 . . . . . . . . . . 11 2 ∈ ℤ
97 eqid 2731 . . . . . . . . . . . 12 (gEx‘𝐺) = (gEx‘𝐺)
98 eqid 2731 . . . . . . . . . . . 12 (od‘𝐺) = (od‘𝐺)
991, 97, 98gexdvds2 19497 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 2 ∈ ℤ) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
10095, 96, 99sylancl 586 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
1011, 97gex2abl 19763 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (gEx‘𝐺) ∥ 2) → 𝐺 ∈ Abel)
102101ex 412 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
103102adantr 480 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
104100, 103sylbird 260 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
105 rexnal 3084 . . . . . . . . . 10 (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 ↔ ¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2)
10695adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Grp)
107 simprl 770 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝑥𝐵)
1081, 98odcl 19448 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → ((od‘𝐺)‘𝑥) ∈ ℕ0)
109108ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
110 4nn0 12400 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
111110a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∈ ℕ0)
112 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) = 4)
113112, 110eqeltrdi 2839 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) ∈ ℕ0)
114113, 67sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐵 ∈ Fin)
115114adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐵 ∈ Fin)
1161, 98oddvds2 19478 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
117106, 115, 107, 116syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
118112adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (♯‘𝐵) = 4)
119117, 118breqtrd 5115 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ 4)
120 sq2 14104 . . . . . . . . . . . . . . . . 17 (2↑2) = 4
121 2nn0 12398 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
12296a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ∈ ℤ)
1231, 98odcl2 19477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ)
124106, 115, 107, 123syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ)
125 pccl 16761 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
12681, 124, 125sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
127126nn0zd 12494 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ)
128 df-2 12188 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
129 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ ((od‘𝐺)‘𝑥) ∥ 2)
130 dvdsexp 16239 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0 ∧ 1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥)))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))
1311303expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
13296, 126, 131sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
133 1z 12502 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℤ
134 eluz 12746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 1 ∈ ℤ) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
135127, 133, 134sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
136 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 2 → (2↑𝑛) = (2↑2))
137136, 120eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 2 → (2↑𝑛) = 4)
138137breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 2 → (((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ 4))
139138rspcev 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ 4) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
140121, 119, 139sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
141 pcprmpw2 16794 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
14281, 124, 141sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
143140, 142mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
144143eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) = ((od‘𝐺)‘𝑥))
145 2cn 12200 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
146 exp1 13974 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → (2↑1) = 2)
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2↑1) = 2
148147a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑1) = 2)
149144, 148breq12d 5102 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1) ↔ ((od‘𝐺)‘𝑥) ∥ 2))
150132, 135, 1493imtr3d 293 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1 → ((od‘𝐺)‘𝑥) ∥ 2))
151129, 150mtod 198 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1)
152 1re 11112 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
153126nn0red 12443 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ)
154 ltnle 11192 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
155152, 153, 154sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
156151, 155mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 1 < (2 pCnt ((od‘𝐺)‘𝑥)))
157 nn0ltp1le 12531 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
15864, 126, 157sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
159156, 158mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
160128, 159eqbrtrid 5124 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
161 eluz2 12738 . . . . . . . . . . . . . . . . . . 19 ((2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
162122, 127, 160, 161syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2))
163 dvdsexp 16239 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
16496, 121, 162, 163mp3an12i 1467 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
165120, 164eqbrtrrid 5125 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
166165, 143breqtrrd 5117 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ ((od‘𝐺)‘𝑥))
167 dvdseq 16225 . . . . . . . . . . . . . . 15 (((((od‘𝐺)‘𝑥) ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (((od‘𝐺)‘𝑥) ∥ 4 ∧ 4 ∥ ((od‘𝐺)‘𝑥))) → ((od‘𝐺)‘𝑥) = 4)
168109, 111, 119, 166, 167syl22anc 838 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = 4)
169168, 118eqtr4d 2769 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (♯‘𝐵))
1701, 98, 106, 107, 169iscygodd 19800 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ CycGrp)
171170, 76syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Abel)
172171rexlimdvaa 3134 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
173105, 172biimtrrid 243 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
174104, 173pm2.61d 179 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Abel)
175174ex 412 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) = 4 → 𝐺 ∈ Abel))
17694, 175jaod 859 . . . . . 6 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4) → 𝐺 ∈ Abel))
17742, 176biimtrid 242 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^5) → 𝐺 ∈ Abel))
178 id 22 . . . . . . 7 ((♯‘𝐵) = 5 → (♯‘𝐵) = 5)
179 5prm 17020 . . . . . . 7 5 ∈ ℙ
180178, 179eqeltrdi 2839 . . . . . 6 ((♯‘𝐵) = 5 → (♯‘𝐵) ∈ ℙ)
181180, 85syl5 34 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) = 5 → 𝐺 ∈ Abel))
182177, 181jaod 859 . . . 4 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5) → 𝐺 ∈ Abel))
18334, 182biimtrid 242 . . 3 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^6) → 𝐺 ∈ Abel))
184183imp 406 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^6)) → 𝐺 ∈ Abel)
18526, 184syldan 591 1 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  c0 4280  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346  ωcom 7796  1oc1o 8378  cen 8866  Fincfn 8869  cc 11004  cr 11005  1c1 11007   + caddc 11009  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  6c6 12184  0cn0 12381  cz 12468  cuz 12732  ..^cfzo 13554  cexp 13968  chash 14237  cdvds 16163  cprime 16582   pCnt cpc 16748  Basecbs 17120  Grpcgrp 18846  odcod 19436  gExcgex 19437  Abelcabl 19693  CycGrpccyg 19789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-eqg 19038  df-od 19440  df-gex 19441  df-cmn 19694  df-abl 19695  df-cyg 19790
This theorem is referenced by:  pgrple2abl  48475
  Copyright terms: Public domain W3C validator