| Step | Hyp | Ref
| Expression |
| 1 | | cygctb.1 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
| 2 | 1 | grpbn0 18984 |
. . . . . 6
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| 3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 𝐵 ≠
∅) |
| 4 | | 6re 12356 |
. . . . . . . 8
⊢ 6 ∈
ℝ |
| 5 | | rexr 11307 |
. . . . . . . 8
⊢ (6 ∈
ℝ → 6 ∈ ℝ*) |
| 6 | | pnfnlt 13170 |
. . . . . . . 8
⊢ (6 ∈
ℝ* → ¬ +∞ < 6) |
| 7 | 4, 5, 6 | mp2b 10 |
. . . . . . 7
⊢ ¬
+∞ < 6 |
| 8 | 1 | fvexi 6920 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ V |
| 9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝐵 ∈ V) |
| 10 | | hashinf 14374 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) →
(♯‘𝐵) =
+∞) |
| 11 | 9, 10 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) →
(♯‘𝐵) =
+∞) |
| 12 | 11 | breq1d 5153 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) →
((♯‘𝐵) < 6
↔ +∞ < 6)) |
| 13 | 12 | biimpd 229 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) →
((♯‘𝐵) < 6
→ +∞ < 6)) |
| 14 | 13 | impancom 451 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (¬ 𝐵 ∈ Fin
→ +∞ < 6)) |
| 15 | 7, 14 | mt3i 149 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 𝐵 ∈
Fin) |
| 16 | | hashnncl 14405 |
. . . . . 6
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
| 17 | 15, 16 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ ((♯‘𝐵)
∈ ℕ ↔ 𝐵
≠ ∅)) |
| 18 | 3, 17 | mpbird 257 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
∈ ℕ) |
| 19 | | nnuz 12921 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 20 | 18, 19 | eleqtrdi 2851 |
. . 3
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
∈ (ℤ≥‘1)) |
| 21 | | 6nn 12355 |
. . . . 5
⊢ 6 ∈
ℕ |
| 22 | 21 | nnzi 12641 |
. . . 4
⊢ 6 ∈
ℤ |
| 23 | 22 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 6 ∈ ℤ) |
| 24 | | simpr 484 |
. . 3
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
< 6) |
| 25 | | elfzo2 13702 |
. . 3
⊢
((♯‘𝐵)
∈ (1..^6) ↔ ((♯‘𝐵) ∈ (ℤ≥‘1)
∧ 6 ∈ ℤ ∧ (♯‘𝐵) < 6)) |
| 26 | 20, 23, 24, 25 | syl3anbrc 1344 |
. 2
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
∈ (1..^6)) |
| 27 | | df-6 12333 |
. . . . . . 7
⊢ 6 = (5 +
1) |
| 28 | 27 | oveq2i 7442 |
. . . . . 6
⊢ (1..^6) =
(1..^(5 + 1)) |
| 29 | 28 | eleq2i 2833 |
. . . . 5
⊢
((♯‘𝐵)
∈ (1..^6) ↔ (♯‘𝐵) ∈ (1..^(5 + 1))) |
| 30 | | 5nn 12352 |
. . . . . . 7
⊢ 5 ∈
ℕ |
| 31 | 30, 19 | eleqtri 2839 |
. . . . . 6
⊢ 5 ∈
(ℤ≥‘1) |
| 32 | | fzosplitsni 13817 |
. . . . . 6
⊢ (5 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔
((♯‘𝐵) ∈
(1..^5) ∨ (♯‘𝐵) = 5))) |
| 33 | 31, 32 | ax-mp 5 |
. . . . 5
⊢
((♯‘𝐵)
∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)) |
| 34 | 29, 33 | bitri 275 |
. . . 4
⊢
((♯‘𝐵)
∈ (1..^6) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)) |
| 35 | | df-5 12332 |
. . . . . . . . 9
⊢ 5 = (4 +
1) |
| 36 | 35 | oveq2i 7442 |
. . . . . . . 8
⊢ (1..^5) =
(1..^(4 + 1)) |
| 37 | 36 | eleq2i 2833 |
. . . . . . 7
⊢
((♯‘𝐵)
∈ (1..^5) ↔ (♯‘𝐵) ∈ (1..^(4 + 1))) |
| 38 | | 4nn 12349 |
. . . . . . . . 9
⊢ 4 ∈
ℕ |
| 39 | 38, 19 | eleqtri 2839 |
. . . . . . . 8
⊢ 4 ∈
(ℤ≥‘1) |
| 40 | | fzosplitsni 13817 |
. . . . . . . 8
⊢ (4 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔
((♯‘𝐵) ∈
(1..^4) ∨ (♯‘𝐵) = 4))) |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . 7
⊢
((♯‘𝐵)
∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)) |
| 42 | 37, 41 | bitri 275 |
. . . . . 6
⊢
((♯‘𝐵)
∈ (1..^5) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)) |
| 43 | | df-4 12331 |
. . . . . . . . . . 11
⊢ 4 = (3 +
1) |
| 44 | 43 | oveq2i 7442 |
. . . . . . . . . 10
⊢ (1..^4) =
(1..^(3 + 1)) |
| 45 | 44 | eleq2i 2833 |
. . . . . . . . 9
⊢
((♯‘𝐵)
∈ (1..^4) ↔ (♯‘𝐵) ∈ (1..^(3 + 1))) |
| 46 | | 3nn 12345 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ |
| 47 | 46, 19 | eleqtri 2839 |
. . . . . . . . . 10
⊢ 3 ∈
(ℤ≥‘1) |
| 48 | | fzosplitsni 13817 |
. . . . . . . . . 10
⊢ (3 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔
((♯‘𝐵) ∈
(1..^3) ∨ (♯‘𝐵) = 3))) |
| 49 | 47, 48 | ax-mp 5 |
. . . . . . . . 9
⊢
((♯‘𝐵)
∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)) |
| 50 | 45, 49 | bitri 275 |
. . . . . . . 8
⊢
((♯‘𝐵)
∈ (1..^4) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)) |
| 51 | | df-3 12330 |
. . . . . . . . . . . . 13
⊢ 3 = (2 +
1) |
| 52 | 51 | oveq2i 7442 |
. . . . . . . . . . . 12
⊢ (1..^3) =
(1..^(2 + 1)) |
| 53 | 52 | eleq2i 2833 |
. . . . . . . . . . 11
⊢
((♯‘𝐵)
∈ (1..^3) ↔ (♯‘𝐵) ∈ (1..^(2 + 1))) |
| 54 | | 2eluzge1 12936 |
. . . . . . . . . . . 12
⊢ 2 ∈
(ℤ≥‘1) |
| 55 | | fzosplitsni 13817 |
. . . . . . . . . . . 12
⊢ (2 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔
((♯‘𝐵) ∈
(1..^2) ∨ (♯‘𝐵) = 2))) |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((♯‘𝐵)
∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)) |
| 57 | 53, 56 | bitri 275 |
. . . . . . . . . 10
⊢
((♯‘𝐵)
∈ (1..^3) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)) |
| 58 | | elsni 4643 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐵)
∈ {1} → (♯‘𝐵) = 1) |
| 59 | | fzo12sn 13787 |
. . . . . . . . . . . . . . . . 17
⊢ (1..^2) =
{1} |
| 60 | 58, 59 | eleq2s 2859 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐵)
∈ (1..^2) → (♯‘𝐵) = 1) |
| 61 | 60 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → (♯‘𝐵) = 1) |
| 62 | | hash1 14443 |
. . . . . . . . . . . . . . 15
⊢
(♯‘1o) = 1 |
| 63 | 61, 62 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → (♯‘𝐵) =
(♯‘1o)) |
| 64 | | 1nn0 12542 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ0 |
| 65 | 61, 64 | eqeltrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → (♯‘𝐵) ∈
ℕ0) |
| 66 | | hashclb 14397 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0)) |
| 67 | 8, 66 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0) |
| 68 | 65, 67 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → 𝐵 ∈
Fin) |
| 69 | | 1onn 8678 |
. . . . . . . . . . . . . . . 16
⊢
1o ∈ ω |
| 70 | | nnfi 9207 |
. . . . . . . . . . . . . . . 16
⊢
(1o ∈ ω → 1o ∈
Fin) |
| 71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
1o ∈ Fin |
| 72 | | hashen 14386 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ Fin ∧ 1o
∈ Fin) → ((♯‘𝐵) = (♯‘1o) ↔
𝐵 ≈
1o)) |
| 73 | 68, 71, 72 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → ((♯‘𝐵) = (♯‘1o) ↔
𝐵 ≈
1o)) |
| 74 | 63, 73 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → 𝐵 ≈
1o) |
| 75 | 1 | 0cyg 19911 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) →
𝐺 ∈
CycGrp) |
| 76 | | cygabl 19909 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Abel) |
| 77 | 75, 76 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) →
𝐺 ∈
Abel) |
| 78 | 74, 77 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → 𝐺 ∈
Abel) |
| 79 | 78 | ex 412 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^2) → 𝐺 ∈
Abel)) |
| 80 | | id 22 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐵) =
2 → (♯‘𝐵)
= 2) |
| 81 | | 2prm 16729 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℙ |
| 82 | 80, 81 | eqeltrdi 2849 |
. . . . . . . . . . . 12
⊢
((♯‘𝐵) =
2 → (♯‘𝐵)
∈ ℙ) |
| 83 | 1 | prmcyg 19912 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
ℙ) → 𝐺 ∈
CycGrp) |
| 84 | 83, 76 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
ℙ) → 𝐺 ∈
Abel) |
| 85 | 84 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
ℙ → 𝐺 ∈
Abel)) |
| 86 | 82, 85 | syl5 34 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 2
→ 𝐺 ∈
Abel)) |
| 87 | 79, 86 | jaod 860 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^2) ∨ (♯‘𝐵) = 2) → 𝐺 ∈ Abel)) |
| 88 | 57, 87 | biimtrid 242 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^3) → 𝐺 ∈
Abel)) |
| 89 | | id 22 |
. . . . . . . . . . 11
⊢
((♯‘𝐵) =
3 → (♯‘𝐵)
= 3) |
| 90 | | 3prm 16731 |
. . . . . . . . . . 11
⊢ 3 ∈
ℙ |
| 91 | 89, 90 | eqeltrdi 2849 |
. . . . . . . . . 10
⊢
((♯‘𝐵) =
3 → (♯‘𝐵)
∈ ℙ) |
| 92 | 91, 85 | syl5 34 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 3
→ 𝐺 ∈
Abel)) |
| 93 | 88, 92 | jaod 860 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^3) ∨ (♯‘𝐵) = 3) → 𝐺 ∈ Abel)) |
| 94 | 50, 93 | biimtrid 242 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^4) → 𝐺 ∈
Abel)) |
| 95 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ 𝐺 ∈
Grp) |
| 96 | | 2z 12649 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
| 97 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(gEx‘𝐺) =
(gEx‘𝐺) |
| 98 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(od‘𝐺) =
(od‘𝐺) |
| 99 | 1, 97, 98 | gexdvds2 19603 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 2 ∈
ℤ) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2)) |
| 100 | 95, 96, 99 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ ((gEx‘𝐺)
∥ 2 ↔ ∀𝑥
∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2)) |
| 101 | 1, 97 | gex2abl 19869 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧
(gEx‘𝐺) ∥ 2)
→ 𝐺 ∈
Abel) |
| 102 | 101 | ex 412 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
((gEx‘𝐺) ∥ 2
→ 𝐺 ∈
Abel)) |
| 103 | 102 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ ((gEx‘𝐺)
∥ 2 → 𝐺 ∈
Abel)) |
| 104 | 100, 103 | sylbird 260 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (∀𝑥 ∈
𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel)) |
| 105 | | rexnal 3100 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 ↔ ¬ ∀𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2) |
| 106 | 95 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Grp) |
| 107 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝑥 ∈ 𝐵) |
| 108 | 1, 98 | odcl 19554 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐵 → ((od‘𝐺)‘𝑥) ∈
ℕ0) |
| 109 | 108 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈
ℕ0) |
| 110 | | 4nn0 12545 |
. . . . . . . . . . . . . . . 16
⊢ 4 ∈
ℕ0 |
| 111 | 110 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∈
ℕ0) |
| 112 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (♯‘𝐵) =
4) |
| 113 | 112, 110 | eqeltrdi 2849 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (♯‘𝐵)
∈ ℕ0) |
| 114 | 113, 67 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ 𝐵 ∈
Fin) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐵 ∈ Fin) |
| 116 | 1, 98 | oddvds2 19584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵)) |
| 117 | 106, 115,
107, 116 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵)) |
| 118 | 112 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (♯‘𝐵) = 4) |
| 119 | 117, 118 | breqtrd 5169 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ 4) |
| 120 | | sq2 14236 |
. . . . . . . . . . . . . . . . 17
⊢
(2↑2) = 4 |
| 121 | | 2nn0 12543 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℕ0 |
| 122 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ∈
ℤ) |
| 123 | 1, 98 | odcl2 19583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 124 | 106, 115,
107, 123 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 125 | | pccl 16887 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (2 pCnt
((od‘𝐺)‘𝑥)) ∈
ℕ0) |
| 126 | 81, 124, 125 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈
ℕ0) |
| 127 | 126 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ) |
| 128 | | df-2 12329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
| 129 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ ((od‘𝐺)‘𝑥) ∥ 2) |
| 130 | | dvdsexp 16365 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((2
∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0 ∧ 1 ∈
(ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥)))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)) |
| 131 | 130 | 3expia 1122 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((2
∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1
∈ (ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))) |
| 132 | 96, 126, 131 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈
(ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))) |
| 133 | | 1z 12647 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
ℤ |
| 134 | | eluz 12892 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((2 pCnt
((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 1 ∈
ℤ) → (1 ∈ (ℤ≥‘(2 pCnt
((od‘𝐺)‘𝑥))) ↔ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1)) |
| 135 | 127, 133,
134 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈
(ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1)) |
| 136 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 2 → (2↑𝑛) = (2↑2)) |
| 137 | 136, 120 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 2 → (2↑𝑛) = 4) |
| 138 | 137 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 2 → (((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ 4)) |
| 139 | 138 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ 4) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛)) |
| 140 | 121, 119,
139 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ∃𝑛 ∈ ℕ0
((od‘𝐺)‘𝑥) ∥ (2↑𝑛)) |
| 141 | | pcprmpw2 16920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0
((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))) |
| 142 | 81, 124, 141 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (∃𝑛 ∈ ℕ0
((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))) |
| 143 | 140, 142 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))) |
| 144 | 143 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑(2 pCnt
((od‘𝐺)‘𝑥))) = ((od‘𝐺)‘𝑥)) |
| 145 | | 2cn 12341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 2 ∈
ℂ |
| 146 | | exp1 14108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (2 ∈
ℂ → (2↑1) = 2) |
| 147 | 145, 146 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(2↑1) = 2 |
| 148 | 147 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑1) =
2) |
| 149 | 144, 148 | breq12d 5156 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2↑(2 pCnt
((od‘𝐺)‘𝑥))) ∥ (2↑1) ↔
((od‘𝐺)‘𝑥) ∥ 2)) |
| 150 | 132, 135,
149 | 3imtr3d 293 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1 →
((od‘𝐺)‘𝑥) ∥ 2)) |
| 151 | 129, 150 | mtod 198 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1) |
| 152 | | 1re 11261 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℝ |
| 153 | 126 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) |
| 154 | | ltnle 11340 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
∈ ℝ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) → (1 < (2 pCnt
((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1)) |
| 155 | 152, 153,
154 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt
((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1)) |
| 156 | 151, 155 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 1 < (2 pCnt
((od‘𝐺)‘𝑥))) |
| 157 | | nn0ltp1le 12676 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 <
(2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt
((od‘𝐺)‘𝑥)))) |
| 158 | 64, 126, 157 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt
((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt
((od‘𝐺)‘𝑥)))) |
| 159 | 156, 158 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 + 1) ≤ (2 pCnt
((od‘𝐺)‘𝑥))) |
| 160 | 128, 159 | eqbrtrid 5178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ≤ (2 pCnt
((od‘𝐺)‘𝑥))) |
| 161 | | eluz2 12884 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2 pCnt
((od‘𝐺)‘𝑥)) ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ (2 pCnt
((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 2 ≤
(2 pCnt ((od‘𝐺)‘𝑥)))) |
| 162 | 122, 127,
160, 161 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈
(ℤ≥‘2)) |
| 163 | | dvdsexp 16365 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℤ ∧ 2 ∈ ℕ0 ∧ (2 pCnt
((od‘𝐺)‘𝑥)) ∈
(ℤ≥‘2)) → (2↑2) ∥ (2↑(2 pCnt
((od‘𝐺)‘𝑥)))) |
| 164 | 96, 121, 162, 163 | mp3an12i 1467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑2) ∥
(2↑(2 pCnt ((od‘𝐺)‘𝑥)))) |
| 165 | 120, 164 | eqbrtrrid 5179 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ (2↑(2
pCnt ((od‘𝐺)‘𝑥)))) |
| 166 | 165, 143 | breqtrrd 5171 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥
((od‘𝐺)‘𝑥)) |
| 167 | | dvdseq 16351 |
. . . . . . . . . . . . . . 15
⊢
(((((od‘𝐺)‘𝑥) ∈ ℕ0 ∧ 4 ∈
ℕ0) ∧ (((od‘𝐺)‘𝑥) ∥ 4 ∧ 4 ∥ ((od‘𝐺)‘𝑥))) → ((od‘𝐺)‘𝑥) = 4) |
| 168 | 109, 111,
119, 166, 167 | syl22anc 839 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = 4) |
| 169 | 168, 118 | eqtr4d 2780 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (♯‘𝐵)) |
| 170 | 1, 98, 106, 107, 169 | iscygodd 19906 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ CycGrp) |
| 171 | 170, 76 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Abel) |
| 172 | 171 | rexlimdvaa 3156 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (∃𝑥 ∈
𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel)) |
| 173 | 105, 172 | biimtrrid 243 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (¬ ∀𝑥
∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel)) |
| 174 | 104, 173 | pm2.61d 179 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ 𝐺 ∈
Abel) |
| 175 | 174 | ex 412 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 4
→ 𝐺 ∈
Abel)) |
| 176 | 94, 175 | jaod 860 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^4) ∨ (♯‘𝐵) = 4) → 𝐺 ∈ Abel)) |
| 177 | 42, 176 | biimtrid 242 |
. . . . 5
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^5) → 𝐺 ∈
Abel)) |
| 178 | | id 22 |
. . . . . . 7
⊢
((♯‘𝐵) =
5 → (♯‘𝐵)
= 5) |
| 179 | | 5prm 17146 |
. . . . . . 7
⊢ 5 ∈
ℙ |
| 180 | 178, 179 | eqeltrdi 2849 |
. . . . . 6
⊢
((♯‘𝐵) =
5 → (♯‘𝐵)
∈ ℙ) |
| 181 | 180, 85 | syl5 34 |
. . . . 5
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 5
→ 𝐺 ∈
Abel)) |
| 182 | 177, 181 | jaod 860 |
. . . 4
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^5) ∨ (♯‘𝐵) = 5) → 𝐺 ∈ Abel)) |
| 183 | 34, 182 | biimtrid 242 |
. . 3
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^6) → 𝐺 ∈
Abel)) |
| 184 | 183 | imp 406 |
. 2
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^6)) → 𝐺 ∈
Abel) |
| 185 | 26, 184 | syldan 591 |
1
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 𝐺 ∈
Abel) |