MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt6abl Structured version   Visualization version   GIF version

Theorem lt6abl 19505
Description: A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
lt6abl ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)

Proof of Theorem lt6abl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . . . . 7 𝐵 = (Base‘𝐺)
21grpbn0 18617 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
32adantr 481 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ≠ ∅)
4 6re 12072 . . . . . . . 8 6 ∈ ℝ
5 rexr 11030 . . . . . . . 8 (6 ∈ ℝ → 6 ∈ ℝ*)
6 pnfnlt 12873 . . . . . . . 8 (6 ∈ ℝ* → ¬ +∞ < 6)
74, 5, 6mp2b 10 . . . . . . 7 ¬ +∞ < 6
81fvexi 6797 . . . . . . . . . . . 12 𝐵 ∈ V
98a1i 11 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐵 ∈ V)
10 hashinf 14058 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
119, 10sylan 580 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1211breq1d 5085 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 ↔ +∞ < 6))
1312biimpd 228 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 → +∞ < 6))
1413impancom 452 . . . . . . 7 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (¬ 𝐵 ∈ Fin → +∞ < 6))
157, 14mt3i 149 . . . . . 6 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ∈ Fin)
16 hashnncl 14090 . . . . . 6 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1715, 16syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
183, 17mpbird 256 . . . 4 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ ℕ)
19 nnuz 12630 . . . 4 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2850 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (ℤ‘1))
21 6nn 12071 . . . . 5 6 ∈ ℕ
2221nnzi 12353 . . . 4 6 ∈ ℤ
2322a1i 11 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 6 ∈ ℤ)
24 simpr 485 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) < 6)
25 elfzo2 13399 . . 3 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (ℤ‘1) ∧ 6 ∈ ℤ ∧ (♯‘𝐵) < 6))
2620, 23, 24, 25syl3anbrc 1342 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (1..^6))
27 df-6 12049 . . . . . . 7 6 = (5 + 1)
2827oveq2i 7295 . . . . . 6 (1..^6) = (1..^(5 + 1))
2928eleq2i 2831 . . . . 5 ((♯‘𝐵) ∈ (1..^6) ↔ (♯‘𝐵) ∈ (1..^(5 + 1)))
30 5nn 12068 . . . . . . 7 5 ∈ ℕ
3130, 19eleqtri 2838 . . . . . 6 5 ∈ (ℤ‘1)
32 fzosplitsni 13507 . . . . . 6 (5 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)))
3331, 32ax-mp 5 . . . . 5 ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
3429, 33bitri 274 . . . 4 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
35 df-5 12048 . . . . . . . . 9 5 = (4 + 1)
3635oveq2i 7295 . . . . . . . 8 (1..^5) = (1..^(4 + 1))
3736eleq2i 2831 . . . . . . 7 ((♯‘𝐵) ∈ (1..^5) ↔ (♯‘𝐵) ∈ (1..^(4 + 1)))
38 4nn 12065 . . . . . . . . 9 4 ∈ ℕ
3938, 19eleqtri 2838 . . . . . . . 8 4 ∈ (ℤ‘1)
40 fzosplitsni 13507 . . . . . . . 8 (4 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)))
4139, 40ax-mp 5 . . . . . . 7 ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
4237, 41bitri 274 . . . . . 6 ((♯‘𝐵) ∈ (1..^5) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
43 df-4 12047 . . . . . . . . . . 11 4 = (3 + 1)
4443oveq2i 7295 . . . . . . . . . 10 (1..^4) = (1..^(3 + 1))
4544eleq2i 2831 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^4) ↔ (♯‘𝐵) ∈ (1..^(3 + 1)))
46 3nn 12061 . . . . . . . . . . 11 3 ∈ ℕ
4746, 19eleqtri 2838 . . . . . . . . . 10 3 ∈ (ℤ‘1)
48 fzosplitsni 13507 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)))
4947, 48ax-mp 5 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
5045, 49bitri 274 . . . . . . . 8 ((♯‘𝐵) ∈ (1..^4) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
51 df-3 12046 . . . . . . . . . . . . 13 3 = (2 + 1)
5251oveq2i 7295 . . . . . . . . . . . 12 (1..^3) = (1..^(2 + 1))
5352eleq2i 2831 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^3) ↔ (♯‘𝐵) ∈ (1..^(2 + 1)))
54 2eluzge1 12643 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
55 fzosplitsni 13507 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)))
5654, 55ax-mp 5 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
5753, 56bitri 274 . . . . . . . . . 10 ((♯‘𝐵) ∈ (1..^3) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
58 elsni 4579 . . . . . . . . . . . . . . . . 17 ((♯‘𝐵) ∈ {1} → (♯‘𝐵) = 1)
59 fzo12sn 13479 . . . . . . . . . . . . . . . . 17 (1..^2) = {1}
6058, 59eleq2s 2858 . . . . . . . . . . . . . . . 16 ((♯‘𝐵) ∈ (1..^2) → (♯‘𝐵) = 1)
6160adantl 482 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = 1)
62 hash1 14128 . . . . . . . . . . . . . . 15 (♯‘1o) = 1
6361, 62eqtr4di 2797 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = (♯‘1o))
64 1nn0 12258 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
6561, 64eqeltrdi 2848 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) ∈ ℕ0)
66 hashclb 14082 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
678, 66ax-mp 5 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
6865, 67sylibr 233 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ∈ Fin)
69 1onn 8479 . . . . . . . . . . . . . . . 16 1o ∈ ω
70 nnfi 8959 . . . . . . . . . . . . . . . 16 (1o ∈ ω → 1o ∈ Fin)
7169, 70ax-mp 5 . . . . . . . . . . . . . . 15 1o ∈ Fin
72 hashen 14070 . . . . . . . . . . . . . . 15 ((𝐵 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7368, 71, 72sylancl 586 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7463, 73mpbid 231 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ≈ 1o)
7510cyg 19503 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp)
76 cygabl 19500 . . . . . . . . . . . . . 14 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
7775, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Abel)
7874, 77syldan 591 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐺 ∈ Abel)
7978ex 413 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^2) → 𝐺 ∈ Abel))
80 id 22 . . . . . . . . . . . . 13 ((♯‘𝐵) = 2 → (♯‘𝐵) = 2)
81 2prm 16406 . . . . . . . . . . . . 13 2 ∈ ℙ
8280, 81eqeltrdi 2848 . . . . . . . . . . . 12 ((♯‘𝐵) = 2 → (♯‘𝐵) ∈ ℙ)
831prmcyg 19504 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)
8483, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ Abel)
8584ex 413 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ ℙ → 𝐺 ∈ Abel))
8682, 85syl5 34 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) = 2 → 𝐺 ∈ Abel))
8779, 86jaod 856 . . . . . . . . . 10 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2) → 𝐺 ∈ Abel))
8857, 87syl5bi 241 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^3) → 𝐺 ∈ Abel))
89 id 22 . . . . . . . . . . 11 ((♯‘𝐵) = 3 → (♯‘𝐵) = 3)
90 3prm 16408 . . . . . . . . . . 11 3 ∈ ℙ
9189, 90eqeltrdi 2848 . . . . . . . . . 10 ((♯‘𝐵) = 3 → (♯‘𝐵) ∈ ℙ)
9291, 85syl5 34 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) = 3 → 𝐺 ∈ Abel))
9388, 92jaod 856 . . . . . . . 8 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3) → 𝐺 ∈ Abel))
9450, 93syl5bi 241 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^4) → 𝐺 ∈ Abel))
95 simpl 483 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Grp)
96 2z 12361 . . . . . . . . . . 11 2 ∈ ℤ
97 eqid 2739 . . . . . . . . . . . 12 (gEx‘𝐺) = (gEx‘𝐺)
98 eqid 2739 . . . . . . . . . . . 12 (od‘𝐺) = (od‘𝐺)
991, 97, 98gexdvds2 19199 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 2 ∈ ℤ) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
10095, 96, 99sylancl 586 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
1011, 97gex2abl 19461 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (gEx‘𝐺) ∥ 2) → 𝐺 ∈ Abel)
102101ex 413 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
103102adantr 481 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
104100, 103sylbird 259 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
105 rexnal 3170 . . . . . . . . . 10 (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 ↔ ¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2)
10695adantr 481 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Grp)
107 simprl 768 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝑥𝐵)
1081, 98odcl 19153 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → ((od‘𝐺)‘𝑥) ∈ ℕ0)
109108ad2antrl 725 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
110 4nn0 12261 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
111110a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∈ ℕ0)
112 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) = 4)
113112, 110eqeltrdi 2848 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) ∈ ℕ0)
114113, 67sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐵 ∈ Fin)
115114adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐵 ∈ Fin)
1161, 98oddvds2 19182 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
117106, 115, 107, 116syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
118112adantr 481 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (♯‘𝐵) = 4)
119117, 118breqtrd 5101 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ 4)
120 sq2 13923 . . . . . . . . . . . . . . . . 17 (2↑2) = 4
121 2nn0 12259 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
12296a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ∈ ℤ)
1231, 98odcl2 19181 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ)
124106, 115, 107, 123syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ)
125 pccl 16559 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
12681, 124, 125sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
127126nn0zd 12433 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ)
128 df-2 12045 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
129 simprr 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ ((od‘𝐺)‘𝑥) ∥ 2)
130 dvdsexp 16046 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0 ∧ 1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥)))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))
1311303expia 1120 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
13296, 126, 131sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
133 1z 12359 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℤ
134 eluz 12605 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 1 ∈ ℤ) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
135127, 133, 134sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
136 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 2 → (2↑𝑛) = (2↑2))
137136, 120eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 2 → (2↑𝑛) = 4)
138137breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 2 → (((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ 4))
139138rspcev 3562 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ 4) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
140121, 119, 139sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
141 pcprmpw2 16592 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
14281, 124, 141sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
143140, 142mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
144143eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) = ((od‘𝐺)‘𝑥))
145 2cn 12057 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
146 exp1 13797 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → (2↑1) = 2)
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2↑1) = 2
148147a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑1) = 2)
149144, 148breq12d 5088 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1) ↔ ((od‘𝐺)‘𝑥) ∥ 2))
150132, 135, 1493imtr3d 293 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1 → ((od‘𝐺)‘𝑥) ∥ 2))
151129, 150mtod 197 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1)
152 1re 10984 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
153126nn0red 12303 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ)
154 ltnle 11063 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
155152, 153, 154sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
156151, 155mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 1 < (2 pCnt ((od‘𝐺)‘𝑥)))
157 nn0ltp1le 12387 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
15864, 126, 157sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
159156, 158mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
160128, 159eqbrtrid 5110 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
161 eluz2 12597 . . . . . . . . . . . . . . . . . . 19 ((2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
162122, 127, 160, 161syl3anbrc 1342 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2))
163 dvdsexp 16046 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
16496, 121, 162, 163mp3an12i 1464 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
165120, 164eqbrtrrid 5111 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
166165, 143breqtrrd 5103 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ ((od‘𝐺)‘𝑥))
167 dvdseq 16032 . . . . . . . . . . . . . . 15 (((((od‘𝐺)‘𝑥) ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (((od‘𝐺)‘𝑥) ∥ 4 ∧ 4 ∥ ((od‘𝐺)‘𝑥))) → ((od‘𝐺)‘𝑥) = 4)
168109, 111, 119, 166, 167syl22anc 836 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = 4)
169168, 118eqtr4d 2782 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (♯‘𝐵))
1701, 98, 106, 107, 169iscygodd 19497 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ CycGrp)
171170, 76syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Abel)
172171rexlimdvaa 3215 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
173105, 172syl5bir 242 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
174104, 173pm2.61d 179 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Abel)
175174ex 413 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) = 4 → 𝐺 ∈ Abel))
17694, 175jaod 856 . . . . . 6 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4) → 𝐺 ∈ Abel))
17742, 176syl5bi 241 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^5) → 𝐺 ∈ Abel))
178 id 22 . . . . . . 7 ((♯‘𝐵) = 5 → (♯‘𝐵) = 5)
179 5prm 16819 . . . . . . 7 5 ∈ ℙ
180178, 179eqeltrdi 2848 . . . . . 6 ((♯‘𝐵) = 5 → (♯‘𝐵) ∈ ℙ)
181180, 85syl5 34 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) = 5 → 𝐺 ∈ Abel))
182177, 181jaod 856 . . . 4 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5) → 𝐺 ∈ Abel))
18334, 182syl5bi 241 . . 3 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^6) → 𝐺 ∈ Abel))
184183imp 407 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^6)) → 𝐺 ∈ Abel)
18526, 184syldan 591 1 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  Vcvv 3433  c0 4257  {csn 4562   class class class wbr 5075  cfv 6437  (class class class)co 7284  ωcom 7721  1oc1o 8299  cen 8739  Fincfn 8742  cc 10878  cr 10879  1c1 10881   + caddc 10883  +∞cpnf 11015  *cxr 11017   < clt 11018  cle 11019  cn 11982  2c2 12037  3c3 12038  4c4 12039  5c5 12040  6c6 12041  0cn0 12242  cz 12328  cuz 12591  ..^cfzo 13391  cexp 13791  chash 14053  cdvds 15972  cprime 16385   pCnt cpc 16546  Basecbs 16921  Grpcgrp 18586  odcod 19141  gExcgex 19142  Abelcabl 19396  CycGrpccyg 19486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-omul 8311  df-er 8507  df-ec 8509  df-qs 8513  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-sum 15407  df-dvds 15973  df-gcd 16211  df-prm 16386  df-pc 16547  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-0g 17161  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-grp 18589  df-minusg 18590  df-sbg 18591  df-mulg 18710  df-subg 18761  df-eqg 18763  df-od 19145  df-gex 19146  df-cmn 19397  df-abl 19398  df-cyg 19487
This theorem is referenced by:  pgrple2abl  45712
  Copyright terms: Public domain W3C validator