MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt6abl Structured version   Visualization version   GIF version

Theorem lt6abl 19763
Description: A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
lt6abl ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)

Proof of Theorem lt6abl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . . . . 7 𝐵 = (Base‘𝐺)
21grpbn0 18851 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
32adantr 482 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ≠ ∅)
4 6re 12302 . . . . . . . 8 6 ∈ ℝ
5 rexr 11260 . . . . . . . 8 (6 ∈ ℝ → 6 ∈ ℝ*)
6 pnfnlt 13108 . . . . . . . 8 (6 ∈ ℝ* → ¬ +∞ < 6)
74, 5, 6mp2b 10 . . . . . . 7 ¬ +∞ < 6
81fvexi 6906 . . . . . . . . . . . 12 𝐵 ∈ V
98a1i 11 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐵 ∈ V)
10 hashinf 14295 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
119, 10sylan 581 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1211breq1d 5159 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 ↔ +∞ < 6))
1312biimpd 228 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐵) < 6 → +∞ < 6))
1413impancom 453 . . . . . . 7 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (¬ 𝐵 ∈ Fin → +∞ < 6))
157, 14mt3i 149 . . . . . 6 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐵 ∈ Fin)
16 hashnncl 14326 . . . . . 6 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1715, 16syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
183, 17mpbird 257 . . . 4 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ ℕ)
19 nnuz 12865 . . . 4 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2844 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (ℤ‘1))
21 6nn 12301 . . . . 5 6 ∈ ℕ
2221nnzi 12586 . . . 4 6 ∈ ℤ
2322a1i 11 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 6 ∈ ℤ)
24 simpr 486 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) < 6)
25 elfzo2 13635 . . 3 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (ℤ‘1) ∧ 6 ∈ ℤ ∧ (♯‘𝐵) < 6))
2620, 23, 24, 25syl3anbrc 1344 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → (♯‘𝐵) ∈ (1..^6))
27 df-6 12279 . . . . . . 7 6 = (5 + 1)
2827oveq2i 7420 . . . . . 6 (1..^6) = (1..^(5 + 1))
2928eleq2i 2826 . . . . 5 ((♯‘𝐵) ∈ (1..^6) ↔ (♯‘𝐵) ∈ (1..^(5 + 1)))
30 5nn 12298 . . . . . . 7 5 ∈ ℕ
3130, 19eleqtri 2832 . . . . . 6 5 ∈ (ℤ‘1)
32 fzosplitsni 13743 . . . . . 6 (5 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)))
3331, 32ax-mp 5 . . . . 5 ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
3429, 33bitri 275 . . . 4 ((♯‘𝐵) ∈ (1..^6) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5))
35 df-5 12278 . . . . . . . . 9 5 = (4 + 1)
3635oveq2i 7420 . . . . . . . 8 (1..^5) = (1..^(4 + 1))
3736eleq2i 2826 . . . . . . 7 ((♯‘𝐵) ∈ (1..^5) ↔ (♯‘𝐵) ∈ (1..^(4 + 1)))
38 4nn 12295 . . . . . . . . 9 4 ∈ ℕ
3938, 19eleqtri 2832 . . . . . . . 8 4 ∈ (ℤ‘1)
40 fzosplitsni 13743 . . . . . . . 8 (4 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)))
4139, 40ax-mp 5 . . . . . . 7 ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
4237, 41bitri 275 . . . . . 6 ((♯‘𝐵) ∈ (1..^5) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4))
43 df-4 12277 . . . . . . . . . . 11 4 = (3 + 1)
4443oveq2i 7420 . . . . . . . . . 10 (1..^4) = (1..^(3 + 1))
4544eleq2i 2826 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^4) ↔ (♯‘𝐵) ∈ (1..^(3 + 1)))
46 3nn 12291 . . . . . . . . . . 11 3 ∈ ℕ
4746, 19eleqtri 2832 . . . . . . . . . 10 3 ∈ (ℤ‘1)
48 fzosplitsni 13743 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)))
4947, 48ax-mp 5 . . . . . . . . 9 ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
5045, 49bitri 275 . . . . . . . 8 ((♯‘𝐵) ∈ (1..^4) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3))
51 df-3 12276 . . . . . . . . . . . . 13 3 = (2 + 1)
5251oveq2i 7420 . . . . . . . . . . . 12 (1..^3) = (1..^(2 + 1))
5352eleq2i 2826 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^3) ↔ (♯‘𝐵) ∈ (1..^(2 + 1)))
54 2eluzge1 12878 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
55 fzosplitsni 13743 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)))
5654, 55ax-mp 5 . . . . . . . . . . 11 ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
5753, 56bitri 275 . . . . . . . . . 10 ((♯‘𝐵) ∈ (1..^3) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2))
58 elsni 4646 . . . . . . . . . . . . . . . . 17 ((♯‘𝐵) ∈ {1} → (♯‘𝐵) = 1)
59 fzo12sn 13715 . . . . . . . . . . . . . . . . 17 (1..^2) = {1}
6058, 59eleq2s 2852 . . . . . . . . . . . . . . . 16 ((♯‘𝐵) ∈ (1..^2) → (♯‘𝐵) = 1)
6160adantl 483 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = 1)
62 hash1 14364 . . . . . . . . . . . . . . 15 (♯‘1o) = 1
6361, 62eqtr4di 2791 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) = (♯‘1o))
64 1nn0 12488 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
6561, 64eqeltrdi 2842 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → (♯‘𝐵) ∈ ℕ0)
66 hashclb 14318 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
678, 66ax-mp 5 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
6865, 67sylibr 233 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ∈ Fin)
69 1onn 8639 . . . . . . . . . . . . . . . 16 1o ∈ ω
70 nnfi 9167 . . . . . . . . . . . . . . . 16 (1o ∈ ω → 1o ∈ Fin)
7169, 70ax-mp 5 . . . . . . . . . . . . . . 15 1o ∈ Fin
72 hashen 14307 . . . . . . . . . . . . . . 15 ((𝐵 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7368, 71, 72sylancl 587 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → ((♯‘𝐵) = (♯‘1o) ↔ 𝐵 ≈ 1o))
7463, 73mpbid 231 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐵 ≈ 1o)
7510cyg 19761 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp)
76 cygabl 19759 . . . . . . . . . . . . . 14 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
7775, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Abel)
7874, 77syldan 592 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^2)) → 𝐺 ∈ Abel)
7978ex 414 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^2) → 𝐺 ∈ Abel))
80 id 22 . . . . . . . . . . . . 13 ((♯‘𝐵) = 2 → (♯‘𝐵) = 2)
81 2prm 16629 . . . . . . . . . . . . 13 2 ∈ ℙ
8280, 81eqeltrdi 2842 . . . . . . . . . . . 12 ((♯‘𝐵) = 2 → (♯‘𝐵) ∈ ℙ)
831prmcyg 19762 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)
8483, 76syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ Abel)
8584ex 414 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ ℙ → 𝐺 ∈ Abel))
8682, 85syl5 34 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((♯‘𝐵) = 2 → 𝐺 ∈ Abel))
8779, 86jaod 858 . . . . . . . . . 10 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2) → 𝐺 ∈ Abel))
8857, 87biimtrid 241 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^3) → 𝐺 ∈ Abel))
89 id 22 . . . . . . . . . . 11 ((♯‘𝐵) = 3 → (♯‘𝐵) = 3)
90 3prm 16631 . . . . . . . . . . 11 3 ∈ ℙ
9189, 90eqeltrdi 2842 . . . . . . . . . 10 ((♯‘𝐵) = 3 → (♯‘𝐵) ∈ ℙ)
9291, 85syl5 34 . . . . . . . . 9 (𝐺 ∈ Grp → ((♯‘𝐵) = 3 → 𝐺 ∈ Abel))
9388, 92jaod 858 . . . . . . . 8 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3) → 𝐺 ∈ Abel))
9450, 93biimtrid 241 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^4) → 𝐺 ∈ Abel))
95 simpl 484 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Grp)
96 2z 12594 . . . . . . . . . . 11 2 ∈ ℤ
97 eqid 2733 . . . . . . . . . . . 12 (gEx‘𝐺) = (gEx‘𝐺)
98 eqid 2733 . . . . . . . . . . . 12 (od‘𝐺) = (od‘𝐺)
991, 97, 98gexdvds2 19453 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 2 ∈ ℤ) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
10095, 96, 99sylancl 587 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2))
1011, 97gex2abl 19719 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (gEx‘𝐺) ∥ 2) → 𝐺 ∈ Abel)
102101ex 414 . . . . . . . . . . 11 (𝐺 ∈ Grp → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
103102adantr 482 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → ((gEx‘𝐺) ∥ 2 → 𝐺 ∈ Abel))
104100, 103sylbird 260 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
105 rexnal 3101 . . . . . . . . . 10 (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 ↔ ¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2)
10695adantr 482 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Grp)
107 simprl 770 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝑥𝐵)
1081, 98odcl 19404 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → ((od‘𝐺)‘𝑥) ∈ ℕ0)
109108ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
110 4nn0 12491 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
111110a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∈ ℕ0)
112 simpr 486 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) = 4)
113112, 110eqeltrdi 2842 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (♯‘𝐵) ∈ ℕ0)
114113, 67sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐵 ∈ Fin)
115114adantr 482 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐵 ∈ Fin)
1161, 98oddvds2 19434 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
117106, 115, 107, 116syl3anc 1372 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
118112adantr 482 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (♯‘𝐵) = 4)
119117, 118breqtrd 5175 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ 4)
120 sq2 14161 . . . . . . . . . . . . . . . . 17 (2↑2) = 4
121 2nn0 12489 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
12296a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ∈ ℤ)
1231, 98odcl2 19433 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ)
124106, 115, 107, 123syl3anc 1372 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ)
125 pccl 16782 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
12681, 124, 125sylancr 588 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0)
127126nn0zd 12584 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ)
128 df-2 12275 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
129 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ ((od‘𝐺)‘𝑥) ∥ 2)
130 dvdsexp 16271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0 ∧ 1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥)))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))
1311303expia 1122 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
13296, 126, 131sylancr 588 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)))
133 1z 12592 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℤ
134 eluz 12836 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 1 ∈ ℤ) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
135127, 133, 134sylancl 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈ (ℤ‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
136 oveq2 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 2 → (2↑𝑛) = (2↑2))
137136, 120eqtrdi 2789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 2 → (2↑𝑛) = 4)
138137breq2d 5161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 2 → (((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ 4))
139138rspcev 3613 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ 4) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
140121, 119, 139sylancr 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛))
141 pcprmpw2 16815 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
14281, 124, 141sylancr 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))))
143140, 142mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
144143eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) = ((od‘𝐺)‘𝑥))
145 2cn 12287 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
146 exp1 14033 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → (2↑1) = 2)
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2↑1) = 2
148147a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑1) = 2)
149144, 148breq12d 5162 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1) ↔ ((od‘𝐺)‘𝑥) ∥ 2))
150132, 135, 1493imtr3d 293 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1 → ((od‘𝐺)‘𝑥) ∥ 2))
151129, 150mtod 197 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1)
152 1re 11214 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
153126nn0red 12533 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ)
154 ltnle 11293 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
155152, 153, 154sylancr 588 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1))
156151, 155mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 1 < (2 pCnt ((od‘𝐺)‘𝑥)))
157 nn0ltp1le 12620 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
15864, 126, 157sylancr 588 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
159156, 158mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 + 1) ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
160128, 159eqbrtrid 5184 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥)))
161 eluz2 12828 . . . . . . . . . . . . . . . . . . 19 ((2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 2 ≤ (2 pCnt ((od‘𝐺)‘𝑥))))
162122, 127, 160, 161syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2))
163 dvdsexp 16271 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ (ℤ‘2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
16496, 121, 162, 163mp3an12i 1466 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑2) ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
165120, 164eqbrtrrid 5185 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ (2↑(2 pCnt ((od‘𝐺)‘𝑥))))
166165, 143breqtrrd 5177 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ ((od‘𝐺)‘𝑥))
167 dvdseq 16257 . . . . . . . . . . . . . . 15 (((((od‘𝐺)‘𝑥) ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (((od‘𝐺)‘𝑥) ∥ 4 ∧ 4 ∥ ((od‘𝐺)‘𝑥))) → ((od‘𝐺)‘𝑥) = 4)
168109, 111, 119, 166, 167syl22anc 838 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = 4)
169168, 118eqtr4d 2776 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (♯‘𝐵))
1701, 98, 106, 107, 169iscygodd 19756 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ CycGrp)
171170, 76syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) ∧ (𝑥𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Abel)
172171rexlimdvaa 3157 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (∃𝑥𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
173105, 172biimtrrid 242 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → (¬ ∀𝑥𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel))
174104, 173pm2.61d 179 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (♯‘𝐵) = 4) → 𝐺 ∈ Abel)
175174ex 414 . . . . . . 7 (𝐺 ∈ Grp → ((♯‘𝐵) = 4 → 𝐺 ∈ Abel))
17694, 175jaod 858 . . . . . 6 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4) → 𝐺 ∈ Abel))
17742, 176biimtrid 241 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^5) → 𝐺 ∈ Abel))
178 id 22 . . . . . . 7 ((♯‘𝐵) = 5 → (♯‘𝐵) = 5)
179 5prm 17042 . . . . . . 7 5 ∈ ℙ
180178, 179eqeltrdi 2842 . . . . . 6 ((♯‘𝐵) = 5 → (♯‘𝐵) ∈ ℙ)
181180, 85syl5 34 . . . . 5 (𝐺 ∈ Grp → ((♯‘𝐵) = 5 → 𝐺 ∈ Abel))
182177, 181jaod 858 . . . 4 (𝐺 ∈ Grp → (((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5) → 𝐺 ∈ Abel))
18334, 182biimtrid 241 . . 3 (𝐺 ∈ Grp → ((♯‘𝐵) ∈ (1..^6) → 𝐺 ∈ Abel))
184183imp 408 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ (1..^6)) → 𝐺 ∈ Abel)
18526, 184syldan 592 1 ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  c0 4323  {csn 4629   class class class wbr 5149  cfv 6544  (class class class)co 7409  ωcom 7855  1oc1o 8459  cen 8936  Fincfn 8939  cc 11108  cr 11109  1c1 11111   + caddc 11113  +∞cpnf 11245  *cxr 11247   < clt 11248  cle 11249  cn 12212  2c2 12267  3c3 12268  4c4 12269  5c5 12270  6c6 12271  0cn0 12472  cz 12558  cuz 12822  ..^cfzo 13627  cexp 14027  chash 14290  cdvds 16197  cprime 16608   pCnt cpc 16769  Basecbs 17144  Grpcgrp 18819  odcod 19392  gExcgex 19393  Abelcabl 19649  CycGrpccyg 19745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-dvds 16198  df-gcd 16436  df-prm 16609  df-pc 16770  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-eqg 19005  df-od 19396  df-gex 19397  df-cmn 19650  df-abl 19651  df-cyg 19746
This theorem is referenced by:  pgrple2abl  47041
  Copyright terms: Public domain W3C validator