Step | Hyp | Ref
| Expression |
1 | | cygctb.1 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
2 | 1 | grpbn0 18199 |
. . . . . 6
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
3 | 2 | adantr 484 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 𝐵 ≠
∅) |
4 | | 6re 11764 |
. . . . . . . 8
⊢ 6 ∈
ℝ |
5 | | rexr 10725 |
. . . . . . . 8
⊢ (6 ∈
ℝ → 6 ∈ ℝ*) |
6 | | pnfnlt 12564 |
. . . . . . . 8
⊢ (6 ∈
ℝ* → ¬ +∞ < 6) |
7 | 4, 5, 6 | mp2b 10 |
. . . . . . 7
⊢ ¬
+∞ < 6 |
8 | 1 | fvexi 6672 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ V |
9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝐵 ∈ V) |
10 | | hashinf 13745 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) →
(♯‘𝐵) =
+∞) |
11 | 9, 10 | sylan 583 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) →
(♯‘𝐵) =
+∞) |
12 | 11 | breq1d 5042 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) →
((♯‘𝐵) < 6
↔ +∞ < 6)) |
13 | 12 | biimpd 232 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin) →
((♯‘𝐵) < 6
→ +∞ < 6)) |
14 | 13 | impancom 455 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (¬ 𝐵 ∈ Fin
→ +∞ < 6)) |
15 | 7, 14 | mt3i 151 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 𝐵 ∈
Fin) |
16 | | hashnncl 13777 |
. . . . . 6
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
17 | 15, 16 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ ((♯‘𝐵)
∈ ℕ ↔ 𝐵
≠ ∅)) |
18 | 3, 17 | mpbird 260 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
∈ ℕ) |
19 | | nnuz 12321 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
20 | 18, 19 | eleqtrdi 2862 |
. . 3
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
∈ (ℤ≥‘1)) |
21 | | 6nn 11763 |
. . . . 5
⊢ 6 ∈
ℕ |
22 | 21 | nnzi 12045 |
. . . 4
⊢ 6 ∈
ℤ |
23 | 22 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 6 ∈ ℤ) |
24 | | simpr 488 |
. . 3
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
< 6) |
25 | | elfzo2 13090 |
. . 3
⊢
((♯‘𝐵)
∈ (1..^6) ↔ ((♯‘𝐵) ∈ (ℤ≥‘1)
∧ 6 ∈ ℤ ∧ (♯‘𝐵) < 6)) |
26 | 20, 23, 24, 25 | syl3anbrc 1340 |
. 2
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ (♯‘𝐵)
∈ (1..^6)) |
27 | | df-6 11741 |
. . . . . . 7
⊢ 6 = (5 +
1) |
28 | 27 | oveq2i 7161 |
. . . . . 6
⊢ (1..^6) =
(1..^(5 + 1)) |
29 | 28 | eleq2i 2843 |
. . . . 5
⊢
((♯‘𝐵)
∈ (1..^6) ↔ (♯‘𝐵) ∈ (1..^(5 + 1))) |
30 | | 5nn 11760 |
. . . . . . 7
⊢ 5 ∈
ℕ |
31 | 30, 19 | eleqtri 2850 |
. . . . . 6
⊢ 5 ∈
(ℤ≥‘1) |
32 | | fzosplitsni 13197 |
. . . . . 6
⊢ (5 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(5 + 1)) ↔
((♯‘𝐵) ∈
(1..^5) ∨ (♯‘𝐵) = 5))) |
33 | 31, 32 | ax-mp 5 |
. . . . 5
⊢
((♯‘𝐵)
∈ (1..^(5 + 1)) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)) |
34 | 29, 33 | bitri 278 |
. . . 4
⊢
((♯‘𝐵)
∈ (1..^6) ↔ ((♯‘𝐵) ∈ (1..^5) ∨ (♯‘𝐵) = 5)) |
35 | | df-5 11740 |
. . . . . . . . 9
⊢ 5 = (4 +
1) |
36 | 35 | oveq2i 7161 |
. . . . . . . 8
⊢ (1..^5) =
(1..^(4 + 1)) |
37 | 36 | eleq2i 2843 |
. . . . . . 7
⊢
((♯‘𝐵)
∈ (1..^5) ↔ (♯‘𝐵) ∈ (1..^(4 + 1))) |
38 | | 4nn 11757 |
. . . . . . . . 9
⊢ 4 ∈
ℕ |
39 | 38, 19 | eleqtri 2850 |
. . . . . . . 8
⊢ 4 ∈
(ℤ≥‘1) |
40 | | fzosplitsni 13197 |
. . . . . . . 8
⊢ (4 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(4 + 1)) ↔
((♯‘𝐵) ∈
(1..^4) ∨ (♯‘𝐵) = 4))) |
41 | 39, 40 | ax-mp 5 |
. . . . . . 7
⊢
((♯‘𝐵)
∈ (1..^(4 + 1)) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)) |
42 | 37, 41 | bitri 278 |
. . . . . 6
⊢
((♯‘𝐵)
∈ (1..^5) ↔ ((♯‘𝐵) ∈ (1..^4) ∨ (♯‘𝐵) = 4)) |
43 | | df-4 11739 |
. . . . . . . . . . 11
⊢ 4 = (3 +
1) |
44 | 43 | oveq2i 7161 |
. . . . . . . . . 10
⊢ (1..^4) =
(1..^(3 + 1)) |
45 | 44 | eleq2i 2843 |
. . . . . . . . 9
⊢
((♯‘𝐵)
∈ (1..^4) ↔ (♯‘𝐵) ∈ (1..^(3 + 1))) |
46 | | 3nn 11753 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ |
47 | 46, 19 | eleqtri 2850 |
. . . . . . . . . 10
⊢ 3 ∈
(ℤ≥‘1) |
48 | | fzosplitsni 13197 |
. . . . . . . . . 10
⊢ (3 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(3 + 1)) ↔
((♯‘𝐵) ∈
(1..^3) ∨ (♯‘𝐵) = 3))) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . 9
⊢
((♯‘𝐵)
∈ (1..^(3 + 1)) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)) |
50 | 45, 49 | bitri 278 |
. . . . . . . 8
⊢
((♯‘𝐵)
∈ (1..^4) ↔ ((♯‘𝐵) ∈ (1..^3) ∨ (♯‘𝐵) = 3)) |
51 | | df-3 11738 |
. . . . . . . . . . . . 13
⊢ 3 = (2 +
1) |
52 | 51 | oveq2i 7161 |
. . . . . . . . . . . 12
⊢ (1..^3) =
(1..^(2 + 1)) |
53 | 52 | eleq2i 2843 |
. . . . . . . . . . 11
⊢
((♯‘𝐵)
∈ (1..^3) ↔ (♯‘𝐵) ∈ (1..^(2 + 1))) |
54 | | 2eluzge1 12334 |
. . . . . . . . . . . 12
⊢ 2 ∈
(ℤ≥‘1) |
55 | | fzosplitsni 13197 |
. . . . . . . . . . . 12
⊢ (2 ∈
(ℤ≥‘1) → ((♯‘𝐵) ∈ (1..^(2 + 1)) ↔
((♯‘𝐵) ∈
(1..^2) ∨ (♯‘𝐵) = 2))) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((♯‘𝐵)
∈ (1..^(2 + 1)) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)) |
57 | 53, 56 | bitri 278 |
. . . . . . . . . 10
⊢
((♯‘𝐵)
∈ (1..^3) ↔ ((♯‘𝐵) ∈ (1..^2) ∨ (♯‘𝐵) = 2)) |
58 | | elsni 4539 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐵)
∈ {1} → (♯‘𝐵) = 1) |
59 | | fzo12sn 13169 |
. . . . . . . . . . . . . . . . 17
⊢ (1..^2) =
{1} |
60 | 58, 59 | eleq2s 2870 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐵)
∈ (1..^2) → (♯‘𝐵) = 1) |
61 | 60 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → (♯‘𝐵) = 1) |
62 | | hash1 13815 |
. . . . . . . . . . . . . . 15
⊢
(♯‘1o) = 1 |
63 | 61, 62 | eqtr4di 2811 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → (♯‘𝐵) =
(♯‘1o)) |
64 | | 1nn0 11950 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ0 |
65 | 61, 64 | eqeltrdi 2860 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → (♯‘𝐵) ∈
ℕ0) |
66 | | hashclb 13769 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0)) |
67 | 8, 66 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0) |
68 | 65, 67 | sylibr 237 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → 𝐵 ∈
Fin) |
69 | | 1onn 8275 |
. . . . . . . . . . . . . . . 16
⊢
1o ∈ ω |
70 | | nnfi 8750 |
. . . . . . . . . . . . . . . 16
⊢
(1o ∈ ω → 1o ∈
Fin) |
71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
1o ∈ Fin |
72 | | hashen 13757 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ Fin ∧ 1o
∈ Fin) → ((♯‘𝐵) = (♯‘1o) ↔
𝐵 ≈
1o)) |
73 | 68, 71, 72 | sylancl 589 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → ((♯‘𝐵) = (♯‘1o) ↔
𝐵 ≈
1o)) |
74 | 63, 73 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → 𝐵 ≈
1o) |
75 | 1 | 0cyg 19081 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) →
𝐺 ∈
CycGrp) |
76 | | cygabl 19078 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Abel) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) →
𝐺 ∈
Abel) |
78 | 74, 77 | syldan 594 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^2)) → 𝐺 ∈
Abel) |
79 | 78 | ex 416 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^2) → 𝐺 ∈
Abel)) |
80 | | id 22 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐵) =
2 → (♯‘𝐵)
= 2) |
81 | | 2prm 16088 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℙ |
82 | 80, 81 | eqeltrdi 2860 |
. . . . . . . . . . . 12
⊢
((♯‘𝐵) =
2 → (♯‘𝐵)
∈ ℙ) |
83 | 1 | prmcyg 19082 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
ℙ) → 𝐺 ∈
CycGrp) |
84 | 83, 76 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
ℙ) → 𝐺 ∈
Abel) |
85 | 84 | ex 416 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
ℙ → 𝐺 ∈
Abel)) |
86 | 82, 85 | syl5 34 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 2
→ 𝐺 ∈
Abel)) |
87 | 79, 86 | jaod 856 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^2) ∨ (♯‘𝐵) = 2) → 𝐺 ∈ Abel)) |
88 | 57, 87 | syl5bi 245 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^3) → 𝐺 ∈
Abel)) |
89 | | id 22 |
. . . . . . . . . . 11
⊢
((♯‘𝐵) =
3 → (♯‘𝐵)
= 3) |
90 | | 3prm 16090 |
. . . . . . . . . . 11
⊢ 3 ∈
ℙ |
91 | 89, 90 | eqeltrdi 2860 |
. . . . . . . . . 10
⊢
((♯‘𝐵) =
3 → (♯‘𝐵)
∈ ℙ) |
92 | 91, 85 | syl5 34 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 3
→ 𝐺 ∈
Abel)) |
93 | 88, 92 | jaod 856 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^3) ∨ (♯‘𝐵) = 3) → 𝐺 ∈ Abel)) |
94 | 50, 93 | syl5bi 245 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^4) → 𝐺 ∈
Abel)) |
95 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ 𝐺 ∈
Grp) |
96 | | 2z 12053 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
97 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(gEx‘𝐺) =
(gEx‘𝐺) |
98 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(od‘𝐺) =
(od‘𝐺) |
99 | 1, 97, 98 | gexdvds2 18777 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 2 ∈
ℤ) → ((gEx‘𝐺) ∥ 2 ↔ ∀𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2)) |
100 | 95, 96, 99 | sylancl 589 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ ((gEx‘𝐺)
∥ 2 ↔ ∀𝑥
∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2)) |
101 | 1, 97 | gex2abl 19039 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧
(gEx‘𝐺) ∥ 2)
→ 𝐺 ∈
Abel) |
102 | 101 | ex 416 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
((gEx‘𝐺) ∥ 2
→ 𝐺 ∈
Abel)) |
103 | 102 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ ((gEx‘𝐺)
∥ 2 → 𝐺 ∈
Abel)) |
104 | 100, 103 | sylbird 263 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (∀𝑥 ∈
𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel)) |
105 | | rexnal 3165 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 ↔ ¬ ∀𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2) |
106 | 95 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Grp) |
107 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝑥 ∈ 𝐵) |
108 | 1, 98 | odcl 18731 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐵 → ((od‘𝐺)‘𝑥) ∈
ℕ0) |
109 | 108 | ad2antrl 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈
ℕ0) |
110 | | 4nn0 11953 |
. . . . . . . . . . . . . . . 16
⊢ 4 ∈
ℕ0 |
111 | 110 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∈
ℕ0) |
112 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (♯‘𝐵) =
4) |
113 | 112, 110 | eqeltrdi 2860 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (♯‘𝐵)
∈ ℕ0) |
114 | 113, 67 | sylibr 237 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ 𝐵 ∈
Fin) |
115 | 114 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐵 ∈ Fin) |
116 | 1, 98 | oddvds2 18760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵)) |
117 | 106, 115,
107, 116 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵)) |
118 | 112 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (♯‘𝐵) = 4) |
119 | 117, 118 | breqtrd 5058 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∥ 4) |
120 | | sq2 13610 |
. . . . . . . . . . . . . . . . 17
⊢
(2↑2) = 4 |
121 | | 2nn0 11951 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℕ0 |
122 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ∈
ℤ) |
123 | 1, 98 | odcl2 18759 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
124 | 106, 115,
107, 123 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
125 | | pccl 16241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (2 pCnt
((od‘𝐺)‘𝑥)) ∈
ℕ0) |
126 | 81, 124, 125 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈
ℕ0) |
127 | 126 | nn0zd 12124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℤ) |
128 | | df-2 11737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
129 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ ((od‘𝐺)‘𝑥) ∥ 2) |
130 | | dvdsexp 15729 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((2
∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0 ∧ 1 ∈
(ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥)))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1)) |
131 | 130 | 3expia 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((2
∈ ℤ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1
∈ (ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))) |
132 | 96, 126, 131 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈
(ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥))) → (2↑(2 pCnt ((od‘𝐺)‘𝑥))) ∥ (2↑1))) |
133 | | 1z 12051 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
ℤ |
134 | | eluz 12296 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((2 pCnt
((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 1 ∈
ℤ) → (1 ∈ (ℤ≥‘(2 pCnt
((od‘𝐺)‘𝑥))) ↔ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1)) |
135 | 127, 133,
134 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 ∈
(ℤ≥‘(2 pCnt ((od‘𝐺)‘𝑥))) ↔ (2 pCnt ((od‘𝐺)‘𝑥)) ≤ 1)) |
136 | | oveq2 7158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 2 → (2↑𝑛) = (2↑2)) |
137 | 136, 120 | eqtrdi 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 2 → (2↑𝑛) = 4) |
138 | 137 | breq2d 5044 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 2 → (((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ 4)) |
139 | 138 | rspcev 3541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ 4) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (2↑𝑛)) |
140 | 121, 119,
139 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ∃𝑛 ∈ ℕ0
((od‘𝐺)‘𝑥) ∥ (2↑𝑛)) |
141 | | pcprmpw2 16273 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0
((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))) |
142 | 81, 124, 141 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (∃𝑛 ∈ ℕ0
((od‘𝐺)‘𝑥) ∥ (2↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥))))) |
143 | 140, 142 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (2↑(2 pCnt ((od‘𝐺)‘𝑥)))) |
144 | 143 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑(2 pCnt
((od‘𝐺)‘𝑥))) = ((od‘𝐺)‘𝑥)) |
145 | | 2cn 11749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 2 ∈
ℂ |
146 | | exp1 13485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (2 ∈
ℂ → (2↑1) = 2) |
147 | 145, 146 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(2↑1) = 2 |
148 | 147 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑1) =
2) |
149 | 144, 148 | breq12d 5045 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2↑(2 pCnt
((od‘𝐺)‘𝑥))) ∥ (2↑1) ↔
((od‘𝐺)‘𝑥) ∥ 2)) |
150 | 132, 135,
149 | 3imtr3d 296 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1 →
((od‘𝐺)‘𝑥) ∥ 2)) |
151 | 129, 150 | mtod 201 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ¬ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1) |
152 | | 1re 10679 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℝ |
153 | 126 | nn0red 11995 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) |
154 | | ltnle 10758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
∈ ℝ ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℝ) → (1 < (2 pCnt
((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1)) |
155 | 152, 153,
154 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt
((od‘𝐺)‘𝑥)) ↔ ¬ (2 pCnt
((od‘𝐺)‘𝑥)) ≤ 1)) |
156 | 151, 155 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 1 < (2 pCnt
((od‘𝐺)‘𝑥))) |
157 | | nn0ltp1le 12079 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℕ0 ∧ (2 pCnt ((od‘𝐺)‘𝑥)) ∈ ℕ0) → (1 <
(2 pCnt ((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt
((od‘𝐺)‘𝑥)))) |
158 | 64, 126, 157 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 < (2 pCnt
((od‘𝐺)‘𝑥)) ↔ (1 + 1) ≤ (2 pCnt
((od‘𝐺)‘𝑥)))) |
159 | 156, 158 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (1 + 1) ≤ (2 pCnt
((od‘𝐺)‘𝑥))) |
160 | 128, 159 | eqbrtrid 5067 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 2 ≤ (2 pCnt
((od‘𝐺)‘𝑥))) |
161 | | eluz2 12288 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2 pCnt
((od‘𝐺)‘𝑥)) ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ (2 pCnt
((od‘𝐺)‘𝑥)) ∈ ℤ ∧ 2 ≤
(2 pCnt ((od‘𝐺)‘𝑥)))) |
162 | 122, 127,
160, 161 | syl3anbrc 1340 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2 pCnt ((od‘𝐺)‘𝑥)) ∈
(ℤ≥‘2)) |
163 | | dvdsexp 15729 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℤ ∧ 2 ∈ ℕ0 ∧ (2 pCnt
((od‘𝐺)‘𝑥)) ∈
(ℤ≥‘2)) → (2↑2) ∥ (2↑(2 pCnt
((od‘𝐺)‘𝑥)))) |
164 | 96, 121, 162, 163 | mp3an12i 1462 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → (2↑2) ∥
(2↑(2 pCnt ((od‘𝐺)‘𝑥)))) |
165 | 120, 164 | eqbrtrrid 5068 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥ (2↑(2
pCnt ((od‘𝐺)‘𝑥)))) |
166 | 165, 143 | breqtrrd 5060 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 4 ∥
((od‘𝐺)‘𝑥)) |
167 | | dvdseq 15715 |
. . . . . . . . . . . . . . 15
⊢
(((((od‘𝐺)‘𝑥) ∈ ℕ0 ∧ 4 ∈
ℕ0) ∧ (((od‘𝐺)‘𝑥) ∥ 4 ∧ 4 ∥ ((od‘𝐺)‘𝑥))) → ((od‘𝐺)‘𝑥) = 4) |
168 | 109, 111,
119, 166, 167 | syl22anc 837 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = 4) |
169 | 168, 118 | eqtr4d 2796 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → ((od‘𝐺)‘𝑥) = (♯‘𝐵)) |
170 | 1, 98, 106, 107, 169 | iscygodd 19075 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ CycGrp) |
171 | 170, 76 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
∧ (𝑥 ∈ 𝐵 ∧ ¬ ((od‘𝐺)‘𝑥) ∥ 2)) → 𝐺 ∈ Abel) |
172 | 171 | rexlimdvaa 3209 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (∃𝑥 ∈
𝐵 ¬ ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel)) |
173 | 105, 172 | syl5bir 246 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ (¬ ∀𝑥
∈ 𝐵 ((od‘𝐺)‘𝑥) ∥ 2 → 𝐺 ∈ Abel)) |
174 | 104, 173 | pm2.61d 182 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) = 4)
→ 𝐺 ∈
Abel) |
175 | 174 | ex 416 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 4
→ 𝐺 ∈
Abel)) |
176 | 94, 175 | jaod 856 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^4) ∨ (♯‘𝐵) = 4) → 𝐺 ∈ Abel)) |
177 | 42, 176 | syl5bi 245 |
. . . . 5
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^5) → 𝐺 ∈
Abel)) |
178 | | id 22 |
. . . . . . 7
⊢
((♯‘𝐵) =
5 → (♯‘𝐵)
= 5) |
179 | | 5prm 16500 |
. . . . . . 7
⊢ 5 ∈
ℙ |
180 | 178, 179 | eqeltrdi 2860 |
. . . . . 6
⊢
((♯‘𝐵) =
5 → (♯‘𝐵)
∈ ℙ) |
181 | 180, 85 | syl5 34 |
. . . . 5
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) = 5
→ 𝐺 ∈
Abel)) |
182 | 177, 181 | jaod 856 |
. . . 4
⊢ (𝐺 ∈ Grp →
(((♯‘𝐵) ∈
(1..^5) ∨ (♯‘𝐵) = 5) → 𝐺 ∈ Abel)) |
183 | 34, 182 | syl5bi 245 |
. . 3
⊢ (𝐺 ∈ Grp →
((♯‘𝐵) ∈
(1..^6) → 𝐺 ∈
Abel)) |
184 | 183 | imp 410 |
. 2
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) ∈
(1..^6)) → 𝐺 ∈
Abel) |
185 | 26, 184 | syldan 594 |
1
⊢ ((𝐺 ∈ Grp ∧
(♯‘𝐵) < 6)
→ 𝐺 ∈
Abel) |