MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bwth Structured version   Visualization version   GIF version

Theorem bwth 23297
Description: The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018.)
Hypothesis
Ref Expression
bwt2.1 𝑋 = 𝐽
Assertion
Ref Expression
bwth ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋

Proof of Theorem bwth
Dummy variables 𝑜 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . . . . . . 7 ¬ ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin)
21a1i 11 . . . . . 6 (𝑏𝑧 → ¬ ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin))
32nrex 3057 . . . . 5 ¬ ∃𝑏𝑧 ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin)
4 r19.29 3094 . . . . 5 ((∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin) → ∃𝑏𝑧 ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin))
53, 4mto 197 . . . 4 ¬ (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
65a1i 11 . . 3 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) → ¬ (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin))
76nrex 3057 . 2 ¬ ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
8 ralnex 3055 . . . . . 6 (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
9 cmptop 23282 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
10 bwt2.1 . . . . . . . . . . 11 𝑋 = 𝐽
1110islp3 23033 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
12113expa 1118 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
1312notbid 318 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
1413ralbidva 3154 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
159, 14sylan 580 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
168, 15bitr3id 285 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
17 rexanali 3084 . . . . . . . . 9 (∃𝑏𝐽 (𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) ↔ ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅))
18 nne 2929 . . . . . . . . . . . 12 (¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅ ↔ (𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅)
19 vex 3451 . . . . . . . . . . . . 13 𝑥 ∈ V
20 sneq 4599 . . . . . . . . . . . . . . . 16 (𝑜 = 𝑥 → {𝑜} = {𝑥})
2120difeq2d 4089 . . . . . . . . . . . . . . 15 (𝑜 = 𝑥 → (𝐴 ∖ {𝑜}) = (𝐴 ∖ {𝑥}))
2221ineq2d 4183 . . . . . . . . . . . . . 14 (𝑜 = 𝑥 → (𝑏 ∩ (𝐴 ∖ {𝑜})) = (𝑏 ∩ (𝐴 ∖ {𝑥})))
2322eqeq1d 2731 . . . . . . . . . . . . 13 (𝑜 = 𝑥 → ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ ↔ (𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅))
2419, 23spcev 3572 . . . . . . . . . . . 12 ((𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅ → ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)
2518, 24sylbi 217 . . . . . . . . . . 11 (¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅ → ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)
2625anim2i 617 . . . . . . . . . 10 ((𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2726reximi 3067 . . . . . . . . 9 (∃𝑏𝐽 (𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2817, 27sylbir 235 . . . . . . . 8 (¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2928ralimi 3066 . . . . . . 7 (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
3010cmpcov2 23277 . . . . . . . 8 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
3130ex 412 . . . . . . 7 (𝐽 ∈ Comp → (∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3229, 31syl5 34 . . . . . 6 (𝐽 ∈ Comp → (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3332adantr 480 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3416, 33sylbid 240 . . . 4 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
35343adant3 1132 . . 3 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
36 elinel2 4165 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) → 𝑧 ∈ Fin)
37 sseq2 3973 . . . . . . . . . . . 12 (𝑋 = 𝑧 → (𝐴𝑋𝐴 𝑧))
3837biimpac 478 . . . . . . . . . . 11 ((𝐴𝑋𝑋 = 𝑧) → 𝐴 𝑧)
39 infssuni 9297 . . . . . . . . . . . . 13 ((¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin ∧ 𝐴 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
40393expa 1118 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin) ∧ 𝐴 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4140ancoms 458 . . . . . . . . . . 11 ((𝐴 𝑧 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4238, 41sylan 580 . . . . . . . . . 10 (((𝐴𝑋𝑋 = 𝑧) ∧ (¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4342an42s 661 . . . . . . . . 9 (((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑧 ∈ Fin ∧ 𝑋 = 𝑧)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4443anassrs 467 . . . . . . . 8 ((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ Fin) ∧ 𝑋 = 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4536, 44sylanl2 681 . . . . . . 7 ((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) ∧ 𝑋 = 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
46 0fi 9013 . . . . . . . . . . . 12 ∅ ∈ Fin
47 eleq1 2816 . . . . . . . . . . . 12 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin ↔ ∅ ∈ Fin))
4846, 47mpbiri 258 . . . . . . . . . . 11 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin)
49 snfi 9014 . . . . . . . . . . 11 {𝑜} ∈ Fin
50 unfi 9135 . . . . . . . . . . 11 (((𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin ∧ {𝑜} ∈ Fin) → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin)
5148, 49, 50sylancl 586 . . . . . . . . . 10 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin)
52 ssun1 4141 . . . . . . . . . . . 12 𝑏 ⊆ (𝑏 ∪ {𝑜})
53 ssun1 4141 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐴 ∪ {𝑜})
54 undif1 4439 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑜}) ∪ {𝑜}) = (𝐴 ∪ {𝑜})
5553, 54sseqtrri 3996 . . . . . . . . . . . 12 𝐴 ⊆ ((𝐴 ∖ {𝑜}) ∪ {𝑜})
56 ss2in 4208 . . . . . . . . . . . 12 ((𝑏 ⊆ (𝑏 ∪ {𝑜}) ∧ 𝐴 ⊆ ((𝐴 ∖ {𝑜}) ∪ {𝑜})) → (𝑏𝐴) ⊆ ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜})))
5752, 55, 56mp2an 692 . . . . . . . . . . 11 (𝑏𝐴) ⊆ ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜}))
58 incom 4172 . . . . . . . . . . 11 (𝐴𝑏) = (𝑏𝐴)
59 undir 4250 . . . . . . . . . . 11 ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) = ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜}))
6057, 58, 593sstr4i 3998 . . . . . . . . . 10 (𝐴𝑏) ⊆ ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜})
61 ssfi 9137 . . . . . . . . . 10 ((((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin ∧ (𝐴𝑏) ⊆ ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜})) → (𝐴𝑏) ∈ Fin)
6251, 60, 61sylancl 586 . . . . . . . . 9 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝐴𝑏) ∈ Fin)
6362exlimiv 1930 . . . . . . . 8 (∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝐴𝑏) ∈ Fin)
6463ralimi 3066 . . . . . . 7 (∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ∀𝑏𝑧 (𝐴𝑏) ∈ Fin)
6545, 64anim12ci 614 . . . . . 6 (((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) ∧ 𝑋 = 𝑧) ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin))
6665expl 457 . . . . 5 (((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
6766reximdva 3146 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
68673adant1 1130 . . 3 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
6935, 68syld 47 . 2 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
707, 69mt3i 149 1 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871  cfv 6511  Fincfn 8918  Topctop 22780  limPtclp 23021  Compccmp 23273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-top 22781  df-cld 22906  df-ntr 22907  df-cls 22908  df-lp 23023  df-cmp 23274
This theorem is referenced by:  poimirlem30  37644  fourierdlem42  46147
  Copyright terms: Public domain W3C validator