MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bwth Structured version   Visualization version   GIF version

Theorem bwth 23330
Description: The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018.)
Hypothesis
Ref Expression
bwt2.1 𝑋 = 𝐽
Assertion
Ref Expression
bwth ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋

Proof of Theorem bwth
Dummy variables 𝑜 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . . . . . . 7 ¬ ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin)
21a1i 11 . . . . . 6 (𝑏𝑧 → ¬ ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin))
32nrex 3057 . . . . 5 ¬ ∃𝑏𝑧 ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin)
4 r19.29 3094 . . . . 5 ((∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin) → ∃𝑏𝑧 ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin))
53, 4mto 197 . . . 4 ¬ (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
65a1i 11 . . 3 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) → ¬ (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin))
76nrex 3057 . 2 ¬ ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
8 ralnex 3055 . . . . . 6 (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
9 cmptop 23315 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
10 bwt2.1 . . . . . . . . . . 11 𝑋 = 𝐽
1110islp3 23066 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
12113expa 1118 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
1312notbid 318 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
1413ralbidva 3154 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
159, 14sylan 580 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
168, 15bitr3id 285 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
17 rexanali 3084 . . . . . . . . 9 (∃𝑏𝐽 (𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) ↔ ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅))
18 nne 2929 . . . . . . . . . . . 12 (¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅ ↔ (𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅)
19 vex 3448 . . . . . . . . . . . . 13 𝑥 ∈ V
20 sneq 4595 . . . . . . . . . . . . . . . 16 (𝑜 = 𝑥 → {𝑜} = {𝑥})
2120difeq2d 4085 . . . . . . . . . . . . . . 15 (𝑜 = 𝑥 → (𝐴 ∖ {𝑜}) = (𝐴 ∖ {𝑥}))
2221ineq2d 4179 . . . . . . . . . . . . . 14 (𝑜 = 𝑥 → (𝑏 ∩ (𝐴 ∖ {𝑜})) = (𝑏 ∩ (𝐴 ∖ {𝑥})))
2322eqeq1d 2731 . . . . . . . . . . . . 13 (𝑜 = 𝑥 → ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ ↔ (𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅))
2419, 23spcev 3569 . . . . . . . . . . . 12 ((𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅ → ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)
2518, 24sylbi 217 . . . . . . . . . . 11 (¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅ → ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)
2625anim2i 617 . . . . . . . . . 10 ((𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2726reximi 3067 . . . . . . . . 9 (∃𝑏𝐽 (𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2817, 27sylbir 235 . . . . . . . 8 (¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2928ralimi 3066 . . . . . . 7 (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
3010cmpcov2 23310 . . . . . . . 8 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
3130ex 412 . . . . . . 7 (𝐽 ∈ Comp → (∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3229, 31syl5 34 . . . . . 6 (𝐽 ∈ Comp → (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3332adantr 480 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3416, 33sylbid 240 . . . 4 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
35343adant3 1132 . . 3 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
36 elinel2 4161 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) → 𝑧 ∈ Fin)
37 sseq2 3970 . . . . . . . . . . . 12 (𝑋 = 𝑧 → (𝐴𝑋𝐴 𝑧))
3837biimpac 478 . . . . . . . . . . 11 ((𝐴𝑋𝑋 = 𝑧) → 𝐴 𝑧)
39 infssuni 9273 . . . . . . . . . . . . 13 ((¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin ∧ 𝐴 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
40393expa 1118 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin) ∧ 𝐴 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4140ancoms 458 . . . . . . . . . . 11 ((𝐴 𝑧 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4238, 41sylan 580 . . . . . . . . . 10 (((𝐴𝑋𝑋 = 𝑧) ∧ (¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4342an42s 661 . . . . . . . . 9 (((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑧 ∈ Fin ∧ 𝑋 = 𝑧)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4443anassrs 467 . . . . . . . 8 ((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ Fin) ∧ 𝑋 = 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4536, 44sylanl2 681 . . . . . . 7 ((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) ∧ 𝑋 = 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
46 0fi 8990 . . . . . . . . . . . 12 ∅ ∈ Fin
47 eleq1 2816 . . . . . . . . . . . 12 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin ↔ ∅ ∈ Fin))
4846, 47mpbiri 258 . . . . . . . . . . 11 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin)
49 snfi 8991 . . . . . . . . . . 11 {𝑜} ∈ Fin
50 unfi 9112 . . . . . . . . . . 11 (((𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin ∧ {𝑜} ∈ Fin) → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin)
5148, 49, 50sylancl 586 . . . . . . . . . 10 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin)
52 ssun1 4137 . . . . . . . . . . . 12 𝑏 ⊆ (𝑏 ∪ {𝑜})
53 ssun1 4137 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐴 ∪ {𝑜})
54 undif1 4435 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑜}) ∪ {𝑜}) = (𝐴 ∪ {𝑜})
5553, 54sseqtrri 3993 . . . . . . . . . . . 12 𝐴 ⊆ ((𝐴 ∖ {𝑜}) ∪ {𝑜})
56 ss2in 4204 . . . . . . . . . . . 12 ((𝑏 ⊆ (𝑏 ∪ {𝑜}) ∧ 𝐴 ⊆ ((𝐴 ∖ {𝑜}) ∪ {𝑜})) → (𝑏𝐴) ⊆ ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜})))
5752, 55, 56mp2an 692 . . . . . . . . . . 11 (𝑏𝐴) ⊆ ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜}))
58 incom 4168 . . . . . . . . . . 11 (𝐴𝑏) = (𝑏𝐴)
59 undir 4246 . . . . . . . . . . 11 ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) = ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜}))
6057, 58, 593sstr4i 3995 . . . . . . . . . 10 (𝐴𝑏) ⊆ ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜})
61 ssfi 9114 . . . . . . . . . 10 ((((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin ∧ (𝐴𝑏) ⊆ ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜})) → (𝐴𝑏) ∈ Fin)
6251, 60, 61sylancl 586 . . . . . . . . 9 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝐴𝑏) ∈ Fin)
6362exlimiv 1930 . . . . . . . 8 (∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝐴𝑏) ∈ Fin)
6463ralimi 3066 . . . . . . 7 (∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ∀𝑏𝑧 (𝐴𝑏) ∈ Fin)
6545, 64anim12ci 614 . . . . . 6 (((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) ∧ 𝑋 = 𝑧) ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin))
6665expl 457 . . . . 5 (((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
6766reximdva 3146 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
68673adant1 1130 . . 3 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
6935, 68syld 47 . 2 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
707, 69mt3i 149 1 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cuni 4867  cfv 6499  Fincfn 8895  Topctop 22813  limPtclp 23054  Compccmp 23306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-fin 8899  df-top 22814  df-cld 22939  df-ntr 22940  df-cls 22941  df-lp 23056  df-cmp 23307
This theorem is referenced by:  poimirlem30  37637  fourierdlem42  46140
  Copyright terms: Public domain W3C validator