MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bwth Structured version   Visualization version   GIF version

Theorem bwth 22469
Description: The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018.)
Hypothesis
Ref Expression
bwt2.1 𝑋 = 𝐽
Assertion
Ref Expression
bwth ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋

Proof of Theorem bwth
Dummy variables 𝑜 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . . . . . . 7 ¬ ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin)
21a1i 11 . . . . . 6 (𝑏𝑧 → ¬ ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin))
32nrex 3196 . . . . 5 ¬ ∃𝑏𝑧 ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin)
4 r19.29 3183 . . . . 5 ((∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin) → ∃𝑏𝑧 ((𝐴𝑏) ∈ Fin ∧ ¬ (𝐴𝑏) ∈ Fin))
53, 4mto 196 . . . 4 ¬ (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
65a1i 11 . . 3 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) → ¬ (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin))
76nrex 3196 . 2 ¬ ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
8 ralnex 3163 . . . . . 6 (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
9 cmptop 22454 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
10 bwt2.1 . . . . . . . . . . 11 𝑋 = 𝐽
1110islp3 22205 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
12113expa 1116 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
1312notbid 317 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
1413ralbidva 3119 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
159, 14sylan 579 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
168, 15bitr3id 284 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅)))
17 rexanali 3191 . . . . . . . . 9 (∃𝑏𝐽 (𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) ↔ ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅))
18 nne 2946 . . . . . . . . . . . 12 (¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅ ↔ (𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅)
19 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
20 sneq 4568 . . . . . . . . . . . . . . . 16 (𝑜 = 𝑥 → {𝑜} = {𝑥})
2120difeq2d 4053 . . . . . . . . . . . . . . 15 (𝑜 = 𝑥 → (𝐴 ∖ {𝑜}) = (𝐴 ∖ {𝑥}))
2221ineq2d 4143 . . . . . . . . . . . . . 14 (𝑜 = 𝑥 → (𝑏 ∩ (𝐴 ∖ {𝑜})) = (𝑏 ∩ (𝐴 ∖ {𝑥})))
2322eqeq1d 2740 . . . . . . . . . . . . 13 (𝑜 = 𝑥 → ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ ↔ (𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅))
2419, 23spcev 3535 . . . . . . . . . . . 12 ((𝑏 ∩ (𝐴 ∖ {𝑥})) = ∅ → ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)
2518, 24sylbi 216 . . . . . . . . . . 11 (¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅ → ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)
2625anim2i 616 . . . . . . . . . 10 ((𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2726reximi 3174 . . . . . . . . 9 (∃𝑏𝐽 (𝑥𝑏 ∧ ¬ (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2817, 27sylbir 234 . . . . . . . 8 (¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
2928ralimi 3086 . . . . . . 7 (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
3010cmpcov2 22449 . . . . . . . 8 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅))
3130ex 412 . . . . . . 7 (𝐽 ∈ Comp → (∀𝑥𝑋𝑏𝐽 (𝑥𝑏 ∧ ∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3229, 31syl5 34 . . . . . 6 (𝐽 ∈ Comp → (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3332adantr 480 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (∀𝑥𝑋 ¬ ∀𝑏𝐽 (𝑥𝑏 → (𝑏 ∩ (𝐴 ∖ {𝑥})) ≠ ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
3416, 33sylbid 239 . . . 4 ((𝐽 ∈ Comp ∧ 𝐴𝑋) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
35343adant3 1130 . . 3 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅)))
36 elinel2 4126 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) → 𝑧 ∈ Fin)
37 sseq2 3943 . . . . . . . . . . . 12 (𝑋 = 𝑧 → (𝐴𝑋𝐴 𝑧))
3837biimpac 478 . . . . . . . . . . 11 ((𝐴𝑋𝑋 = 𝑧) → 𝐴 𝑧)
39 infssuni 9040 . . . . . . . . . . . . 13 ((¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin ∧ 𝐴 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
40393expa 1116 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin) ∧ 𝐴 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4140ancoms 458 . . . . . . . . . . 11 ((𝐴 𝑧 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4238, 41sylan 579 . . . . . . . . . 10 (((𝐴𝑋𝑋 = 𝑧) ∧ (¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4342an42s 657 . . . . . . . . 9 (((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑧 ∈ Fin ∧ 𝑋 = 𝑧)) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4443anassrs 467 . . . . . . . 8 ((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ Fin) ∧ 𝑋 = 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
4536, 44sylanl2 677 . . . . . . 7 ((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) ∧ 𝑋 = 𝑧) → ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)
46 0fin 8916 . . . . . . . . . . . 12 ∅ ∈ Fin
47 eleq1 2826 . . . . . . . . . . . 12 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin ↔ ∅ ∈ Fin))
4846, 47mpbiri 257 . . . . . . . . . . 11 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin)
49 snfi 8788 . . . . . . . . . . 11 {𝑜} ∈ Fin
50 unfi 8917 . . . . . . . . . . 11 (((𝑏 ∩ (𝐴 ∖ {𝑜})) ∈ Fin ∧ {𝑜} ∈ Fin) → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin)
5148, 49, 50sylancl 585 . . . . . . . . . 10 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin)
52 ssun1 4102 . . . . . . . . . . . 12 𝑏 ⊆ (𝑏 ∪ {𝑜})
53 ssun1 4102 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐴 ∪ {𝑜})
54 undif1 4406 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑜}) ∪ {𝑜}) = (𝐴 ∪ {𝑜})
5553, 54sseqtrri 3954 . . . . . . . . . . . 12 𝐴 ⊆ ((𝐴 ∖ {𝑜}) ∪ {𝑜})
56 ss2in 4167 . . . . . . . . . . . 12 ((𝑏 ⊆ (𝑏 ∪ {𝑜}) ∧ 𝐴 ⊆ ((𝐴 ∖ {𝑜}) ∪ {𝑜})) → (𝑏𝐴) ⊆ ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜})))
5752, 55, 56mp2an 688 . . . . . . . . . . 11 (𝑏𝐴) ⊆ ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜}))
58 incom 4131 . . . . . . . . . . 11 (𝐴𝑏) = (𝑏𝐴)
59 undir 4207 . . . . . . . . . . 11 ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) = ((𝑏 ∪ {𝑜}) ∩ ((𝐴 ∖ {𝑜}) ∪ {𝑜}))
6057, 58, 593sstr4i 3960 . . . . . . . . . 10 (𝐴𝑏) ⊆ ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜})
61 ssfi 8918 . . . . . . . . . 10 ((((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜}) ∈ Fin ∧ (𝐴𝑏) ⊆ ((𝑏 ∩ (𝐴 ∖ {𝑜})) ∪ {𝑜})) → (𝐴𝑏) ∈ Fin)
6251, 60, 61sylancl 585 . . . . . . . . 9 ((𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝐴𝑏) ∈ Fin)
6362exlimiv 1934 . . . . . . . 8 (∃𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → (𝐴𝑏) ∈ Fin)
6463ralimi 3086 . . . . . . 7 (∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅ → ∀𝑏𝑧 (𝐴𝑏) ∈ Fin)
6545, 64anim12ci 613 . . . . . 6 (((((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) ∧ 𝑋 = 𝑧) ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin))
6665expl 457 . . . . 5 (((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → (∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
6766reximdva 3202 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
68673adant1 1128 . . 3 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑧 ∧ ∀𝑏𝑧𝑜(𝑏 ∩ (𝐴 ∖ {𝑜})) = ∅) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
6935, 68syld 47 . 2 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (¬ ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴) → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)(∀𝑏𝑧 (𝐴𝑏) ∈ Fin ∧ ∃𝑏𝑧 ¬ (𝐴𝑏) ∈ Fin)))
707, 69mt3i 149 1 ((𝐽 ∈ Comp ∧ 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cfv 6418  Fincfn 8691  Topctop 21950  limPtclp 22193  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080  df-lp 22195  df-cmp 22446
This theorem is referenced by:  poimirlem30  35734  fourierdlem42  43580
  Copyright terms: Public domain W3C validator