Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-eudf Structured version   Visualization version   GIF version

Theorem wl-eudf 35727
Description: Version of eu6 2574 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.)
Hypotheses
Ref Expression
wl-eudf.1 𝑥𝜑
wl-eudf.2 𝑦𝜑
wl-eudf.3 (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦)
wl-eudf.4 (𝜑 → Ⅎ𝑦𝜓)
Assertion
Ref Expression
wl-eudf (𝜑 → (∃!𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))

Proof of Theorem wl-eudf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eu6 2574 . 2 (∃!𝑥𝜓 ↔ ∃𝑢𝑥(𝜓𝑥 = 𝑢))
2 wl-eudf.2 . . 3 𝑦𝜑
3 wl-eudf.1 . . . 4 𝑥𝜑
4 wl-eudf.4 . . . . 5 (𝜑 → Ⅎ𝑦𝜓)
5 wl-eudf.3 . . . . . 6 (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦)
6 nfeqf1 2379 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥 = 𝑢)
76naecoms 2429 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 = 𝑢)
85, 7syl 17 . . . . 5 (𝜑 → Ⅎ𝑦 𝑥 = 𝑢)
94, 8nfbid 1905 . . . 4 (𝜑 → Ⅎ𝑦(𝜓𝑥 = 𝑢))
103, 9nfald 2322 . . 3 (𝜑 → Ⅎ𝑦𝑥(𝜓𝑥 = 𝑢))
11 nfnae 2434 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
12 nfeqf2 2377 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑢 = 𝑦)
1311, 12nfan1 2193 . . . . . 6 𝑥(¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑦)
14 equequ2 2029 . . . . . . . 8 (𝑢 = 𝑦 → (𝑥 = 𝑢𝑥 = 𝑦))
1514bibi2d 343 . . . . . . 7 (𝑢 = 𝑦 → ((𝜓𝑥 = 𝑢) ↔ (𝜓𝑥 = 𝑦)))
1615adantl 482 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑦) → ((𝜓𝑥 = 𝑢) ↔ (𝜓𝑥 = 𝑦)))
1713, 16albid 2215 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑦) → (∀𝑥(𝜓𝑥 = 𝑢) ↔ ∀𝑥(𝜓𝑥 = 𝑦)))
185, 17sylan 580 . . . 4 ((𝜑𝑢 = 𝑦) → (∀𝑥(𝜓𝑥 = 𝑢) ↔ ∀𝑥(𝜓𝑥 = 𝑦)))
1918ex 413 . . 3 (𝜑 → (𝑢 = 𝑦 → (∀𝑥(𝜓𝑥 = 𝑢) ↔ ∀𝑥(𝜓𝑥 = 𝑦))))
202, 10, 19cbvexd 2408 . 2 (𝜑 → (∃𝑢𝑥(𝜓𝑥 = 𝑢) ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))
211, 20bitrid 282 1 (𝜑 → (∃!𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782  wnf 1786  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569
This theorem is referenced by:  wl-eutf  35728
  Copyright terms: Public domain W3C validator