| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf2 | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfcv 2891 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 5-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvf 2918 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
| 2 | 1 | naecoms 2427 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: dfid3 5529 oprabid 7401 axrepndlem1 10521 axrepndlem2 10522 axrepnd 10523 axunnd 10525 axpowndlem3 10528 axpowndlem4 10529 axpownd 10530 axregndlem2 10532 axinfndlem1 10534 axinfnd 10535 axacndlem4 10539 axacndlem5 10540 axacnd 10541 bj-nfcsym 36860 |
| Copyright terms: Public domain | W3C validator |