| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf2 | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. Usage of this theorem is discouraged because it depends on ax-13 2376. See nfcv 2898 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 5-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvf 2925 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
| 2 | 1 | naecoms 2433 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-nfc 2885 |
| This theorem is referenced by: dfid3 5551 oprabid 7437 axrepndlem1 10606 axrepndlem2 10607 axrepnd 10608 axunnd 10610 axpowndlem3 10613 axpowndlem4 10614 axpownd 10615 axregndlem2 10617 axinfndlem1 10619 axinfnd 10620 axacndlem4 10624 axacndlem5 10625 axacnd 10626 bj-nfcsym 36917 |
| Copyright terms: Public domain | W3C validator |