MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf2 Structured version   Visualization version   GIF version

Theorem nfcvf2 2937
Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfcv 2907 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 5-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf2 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)

Proof of Theorem nfcvf2
StepHypRef Expression
1 nfcvf 2936 . 2 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
21naecoms 2429 1 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-nfc 2889
This theorem is referenced by:  dfid3  5492  oprabid  7307  axrepndlem1  10348  axrepndlem2  10349  axrepnd  10350  axunnd  10352  axpowndlem3  10355  axpowndlem4  10356  axpownd  10357  axregndlem2  10359  axinfndlem1  10361  axinfnd  10362  axacndlem4  10366  axacndlem5  10367  axacnd  10368  bj-nfcsym  35084
  Copyright terms: Public domain W3C validator