Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcvf2 | Structured version Visualization version GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. Usage of this theorem is discouraged because it depends on ax-13 2373. See nfcv 2908 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 5-Dec-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcvf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvf 2937 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
2 | 1 | naecoms 2430 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-nfc 2890 |
This theorem is referenced by: dfid3 5491 oprabid 7300 axrepndlem1 10332 axrepndlem2 10333 axrepnd 10334 axunnd 10336 axpowndlem3 10339 axpowndlem4 10340 axpownd 10341 axregndlem2 10343 axinfndlem1 10345 axinfnd 10346 axacndlem4 10350 axacndlem5 10351 axacnd 10352 bj-nfcsym 35063 |
Copyright terms: Public domain | W3C validator |