| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf2 | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfcv 2894 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 5-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvf 2921 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
| 2 | 1 | naecoms 2429 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-nfc 2881 |
| This theorem is referenced by: dfid3 5512 oprabid 7378 axrepndlem1 10483 axrepndlem2 10484 axrepnd 10485 axunnd 10487 axpowndlem3 10490 axpowndlem4 10491 axpownd 10492 axregndlem2 10494 axinfndlem1 10496 axinfnd 10497 axacndlem4 10501 axacndlem5 10502 axacnd 10503 bj-nfcsym 36941 |
| Copyright terms: Public domain | W3C validator |