MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf2 Structured version   Visualization version   GIF version

Theorem nfcvf2 2926
Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. Usage of this theorem is discouraged because it depends on ax-13 2376. See nfcv 2898 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 5-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf2 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)

Proof of Theorem nfcvf2
StepHypRef Expression
1 nfcvf 2925 . 2 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
21naecoms 2433 1 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wnfc 2883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-nfc 2885
This theorem is referenced by:  dfid3  5551  oprabid  7437  axrepndlem1  10606  axrepndlem2  10607  axrepnd  10608  axunnd  10610  axpowndlem3  10613  axpowndlem4  10614  axpownd  10615  axregndlem2  10617  axinfndlem1  10619  axinfnd  10620  axacndlem4  10624  axacndlem5  10625  axacnd  10626  bj-nfcsym  36917
  Copyright terms: Public domain W3C validator