MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf2 Structured version   Visualization version   GIF version

Theorem nfcvf2 2919
Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfcv 2891 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 5-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf2 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)

Proof of Theorem nfcvf2
StepHypRef Expression
1 nfcvf 2918 . 2 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
21naecoms 2427 1 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wnfc 2876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-nfc 2878
This theorem is referenced by:  dfid3  5529  oprabid  7401  axrepndlem1  10521  axrepndlem2  10522  axrepnd  10523  axunnd  10525  axpowndlem3  10528  axpowndlem4  10529  axpownd  10530  axregndlem2  10532  axinfndlem1  10534  axinfnd  10535  axacndlem4  10539  axacndlem5  10540  axacnd  10541  bj-nfcsym  36860
  Copyright terms: Public domain W3C validator