![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2 | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
ndfatafv2 | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 47159 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iffalse 4540 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
3 | 1, 2 | eqtrid 2787 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ifcif 4531 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 ran crn 5690 ℩cio 6514 defAt wdfat 47066 ''''cafv2 47158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 df-afv2 47159 |
This theorem is referenced by: ndfatafv2undef 47162 ndfatafv2nrn 47171 afv2ndefb 47174 afv20defat 47182 |
Copyright terms: Public domain | W3C validator |