Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndfatafv2 Structured version   Visualization version   GIF version

Theorem ndfatafv2 46491
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
ndfatafv2 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)

Proof of Theorem ndfatafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 46489 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iffalse 4532 . 2 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = 𝒫 ran 𝐹)
31, 2eqtrid 2778 1 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  ifcif 4523  𝒫 cpw 4597   cuni 4902   class class class wbr 5141  ran crn 5670  cio 6487   defAt wdfat 46396  ''''cafv2 46488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-if 4524  df-afv2 46489
This theorem is referenced by:  ndfatafv2undef  46492  ndfatafv2nrn  46501  afv2ndefb  46504  afv20defat  46512
  Copyright terms: Public domain W3C validator