Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndfatafv2 Structured version   Visualization version   GIF version

Theorem ndfatafv2 44703
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
ndfatafv2 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)

Proof of Theorem ndfatafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 44701 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iffalse 4468 . 2 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = 𝒫 ran 𝐹)
31, 2eqtrid 2790 1 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  ifcif 4459  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  ran crn 5590  cio 6389   defAt wdfat 44608  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-if 4460  df-afv2 44701
This theorem is referenced by:  ndfatafv2undef  44704  ndfatafv2nrn  44713  afv2ndefb  44716  afv20defat  44724
  Copyright terms: Public domain W3C validator