Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndfatafv2 Structured version   Visualization version   GIF version

Theorem ndfatafv2 45909
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
ndfatafv2 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)

Proof of Theorem ndfatafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 45907 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iffalse 4537 . 2 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = 𝒫 ran 𝐹)
31, 2eqtrid 2784 1 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  ifcif 4528  𝒫 cpw 4602   cuni 4908   class class class wbr 5148  ran crn 5677  cio 6493   defAt wdfat 45814  ''''cafv2 45906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-if 4529  df-afv2 45907
This theorem is referenced by:  ndfatafv2undef  45910  ndfatafv2nrn  45919  afv2ndefb  45922  afv20defat  45930
  Copyright terms: Public domain W3C validator