| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2 | Structured version Visualization version GIF version | ||
| Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| ndfatafv2 | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47336 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
| 2 | iffalse 4485 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
| 3 | 1, 2 | eqtrid 2780 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ifcif 4476 𝒫 cpw 4551 ∪ cuni 4860 class class class wbr 5095 ran crn 5622 ℩cio 6442 defAt wdfat 47243 ''''cafv2 47335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 df-afv2 47336 |
| This theorem is referenced by: ndfatafv2undef 47339 ndfatafv2nrn 47348 afv2ndefb 47351 afv20defat 47359 |
| Copyright terms: Public domain | W3C validator |