Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndfatafv2 Structured version   Visualization version   GIF version

Theorem ndfatafv2 47338
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
ndfatafv2 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)

Proof of Theorem ndfatafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47336 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iffalse 4485 . 2 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = 𝒫 ran 𝐹)
31, 2eqtrid 2780 1 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  ifcif 4476  𝒫 cpw 4551   cuni 4860   class class class wbr 5095  ran crn 5622  cio 6442   defAt wdfat 47243  ''''cafv2 47335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-if 4477  df-afv2 47336
This theorem is referenced by:  ndfatafv2undef  47339  ndfatafv2nrn  47348  afv2ndefb  47351  afv20defat  47359
  Copyright terms: Public domain W3C validator