![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2 | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
ndfatafv2 | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 45907 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iffalse 4537 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
3 | 1, 2 | eqtrid 2784 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ifcif 4528 𝒫 cpw 4602 ∪ cuni 4908 class class class wbr 5148 ran crn 5677 ℩cio 6493 defAt wdfat 45814 ''''cafv2 45906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-if 4529 df-afv2 45907 |
This theorem is referenced by: ndfatafv2undef 45910 ndfatafv2nrn 45919 afv2ndefb 45922 afv20defat 45930 |
Copyright terms: Public domain | W3C validator |