Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2 | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
ndfatafv2 | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 44960 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iffalse 4478 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
3 | 1, 2 | eqtrid 2789 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ifcif 4469 𝒫 cpw 4543 ∪ cuni 4848 class class class wbr 5085 ran crn 5606 ℩cio 6413 defAt wdfat 44867 ''''cafv2 44959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-if 4470 df-afv2 44960 |
This theorem is referenced by: ndfatafv2undef 44963 ndfatafv2nrn 44972 afv2ndefb 44975 afv20defat 44983 |
Copyright terms: Public domain | W3C validator |