Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2 | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
ndfatafv2 | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 44701 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iffalse 4468 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
3 | 1, 2 | eqtrid 2790 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ifcif 4459 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ran crn 5590 ℩cio 6389 defAt wdfat 44608 ''''cafv2 44700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-if 4460 df-afv2 44701 |
This theorem is referenced by: ndfatafv2undef 44704 ndfatafv2nrn 44713 afv2ndefb 44716 afv20defat 44724 |
Copyright terms: Public domain | W3C validator |