| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2undef | Structured version Visualization version GIF version | ||
| Description: The alternate function value at a class 𝐴 is undefined if the function, whose range is a set, is not defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| ndfatafv2undef | ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndfatafv2 47221 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
| 2 | undefval 8201 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (Undef‘ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
| 3 | 2 | eqcomd 2736 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 = (Undef‘ran 𝐹)) |
| 4 | 1, 3 | sylan9eqr 2787 | 1 ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 𝒫 cpw 4548 ∪ cuni 4857 ran crn 5615 ‘cfv 6477 Undefcund 8197 defAt wdfat 47126 ''''cafv2 47218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-undef 8198 df-afv2 47219 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |