|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2undef | Structured version Visualization version GIF version | ||
| Description: The alternate function value at a class 𝐴 is undefined if the function, whose range is a set, is not defined at 𝐴. (Contributed by AV, 2-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| ndfatafv2undef | ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ndfatafv2 47223 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
| 2 | undefval 8301 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (Undef‘ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
| 3 | 2 | eqcomd 2743 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 = (Undef‘ran 𝐹)) | 
| 4 | 1, 3 | sylan9eqr 2799 | 1 ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 𝒫 cpw 4600 ∪ cuni 4907 ran crn 5686 ‘cfv 6561 Undefcund 8297 defAt wdfat 47128 ''''cafv2 47220 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-undef 8298 df-afv2 47221 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |