Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndfatafv2undef Structured version   Visualization version   GIF version

Theorem ndfatafv2undef 46220
Description: The alternate function value at a class ๐ด is undefined if the function, whose range is a set, is not defined at ๐ด. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
ndfatafv2undef ((ran ๐น โˆˆ ๐‘‰ โˆง ยฌ ๐น defAt ๐ด) โ†’ (๐น''''๐ด) = (Undefโ€˜ran ๐น))

Proof of Theorem ndfatafv2undef
StepHypRef Expression
1 ndfatafv2 46219 . 2 (ยฌ ๐น defAt ๐ด โ†’ (๐น''''๐ด) = ๐’ซ โˆช ran ๐น)
2 undefval 8265 . . 3 (ran ๐น โˆˆ ๐‘‰ โ†’ (Undefโ€˜ran ๐น) = ๐’ซ โˆช ran ๐น)
32eqcomd 2736 . 2 (ran ๐น โˆˆ ๐‘‰ โ†’ ๐’ซ โˆช ran ๐น = (Undefโ€˜ran ๐น))
41, 3sylan9eqr 2792 1 ((ran ๐น โˆˆ ๐‘‰ โˆง ยฌ ๐น defAt ๐ด) โ†’ (๐น''''๐ด) = (Undefโ€˜ran ๐น))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 394   = wceq 1539   โˆˆ wcel 2104  ๐’ซ cpw 4603  โˆช cuni 4909  ran crn 5678  โ€˜cfv 6544  Undefcund 8261   defAt wdfat 46124  ''''cafv2 46216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-undef 8262  df-afv2 46217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator