![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2undef | Structured version Visualization version GIF version |
Description: The alternate function value at a class ๐ด is undefined if the function, whose range is a set, is not defined at ๐ด. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
ndfatafv2undef | โข ((ran ๐น โ ๐ โง ยฌ ๐น defAt ๐ด) โ (๐น''''๐ด) = (Undefโran ๐น)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndfatafv2 46219 | . 2 โข (ยฌ ๐น defAt ๐ด โ (๐น''''๐ด) = ๐ซ โช ran ๐น) | |
2 | undefval 8265 | . . 3 โข (ran ๐น โ ๐ โ (Undefโran ๐น) = ๐ซ โช ran ๐น) | |
3 | 2 | eqcomd 2736 | . 2 โข (ran ๐น โ ๐ โ ๐ซ โช ran ๐น = (Undefโran ๐น)) |
4 | 1, 3 | sylan9eqr 2792 | 1 โข ((ran ๐น โ ๐ โง ยฌ ๐น defAt ๐ด) โ (๐น''''๐ด) = (Undefโran ๐น)) |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 โ wi 4 โง wa 394 = wceq 1539 โ wcel 2104 ๐ซ cpw 4603 โช cuni 4909 ran crn 5678 โcfv 6544 Undefcund 8261 defAt wdfat 46124 ''''cafv2 46216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-undef 8262 df-afv2 46217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |