| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2undef | Structured version Visualization version GIF version | ||
| Description: The alternate function value at a class 𝐴 is undefined if the function, whose range is a set, is not defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| ndfatafv2undef | ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndfatafv2 47240 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
| 2 | undefval 8275 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (Undef‘ran 𝐹) = 𝒫 ∪ ran 𝐹) | |
| 3 | 2 | eqcomd 2741 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 = (Undef‘ran 𝐹)) |
| 4 | 1, 3 | sylan9eqr 2792 | 1 ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 𝒫 cpw 4575 ∪ cuni 4883 ran crn 5655 ‘cfv 6531 Undefcund 8271 defAt wdfat 47145 ''''cafv2 47237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-undef 8272 df-afv2 47238 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |