| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ndefb | Structured version Visualization version GIF version | ||
| Description: Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2ndefb | ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuninel 8257 | . . 3 ⊢ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹 | |
| 2 | df-nel 3031 | . . . 4 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹) | |
| 3 | eleq1 2817 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
| 5 | 2, 4 | bitrid 283 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
| 6 | 1, 5 | mpbiri 258 | . 2 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) |
| 7 | funressndmafv2rn 47228 | . . . . 5 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹) | |
| 8 | 7 | con3i 154 | . . . 4 ⊢ (¬ (𝐹''''𝐴) ∈ ran 𝐹 → ¬ 𝐹 defAt 𝐴) |
| 9 | 2, 8 | sylbi 217 | . . 3 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → ¬ 𝐹 defAt 𝐴) |
| 10 | ndfatafv2 47216 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
| 12 | 6, 11 | impbii 209 | 1 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 𝒫 cpw 4566 ∪ cuni 4874 ran crn 5642 defAt wdfat 47121 ''''cafv2 47213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-dfat 47124 df-afv2 47214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |