![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ndefb | Structured version Visualization version GIF version |
Description: Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.) |
Ref | Expression |
---|---|
afv2ndefb | ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuninel 8261 | . . 3 ⊢ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹 | |
2 | df-nel 3041 | . . . 4 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹) | |
3 | eleq1 2815 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) | |
4 | 3 | notbid 318 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
5 | 2, 4 | bitrid 283 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
6 | 1, 5 | mpbiri 258 | . 2 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) |
7 | funressndmafv2rn 46503 | . . . . 5 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹) | |
8 | 7 | con3i 154 | . . . 4 ⊢ (¬ (𝐹''''𝐴) ∈ ran 𝐹 → ¬ 𝐹 defAt 𝐴) |
9 | 2, 8 | sylbi 216 | . . 3 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → ¬ 𝐹 defAt 𝐴) |
10 | ndfatafv2 46491 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
12 | 6, 11 | impbii 208 | 1 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∉ wnel 3040 𝒫 cpw 4597 ∪ cuni 4902 ran crn 5670 defAt wdfat 46396 ''''cafv2 46488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-iota 6489 df-fun 6539 df-dfat 46399 df-afv2 46489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |