Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ndefb Structured version   Visualization version   GIF version

Theorem afv2ndefb 44403
Description: Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
afv2ndefb ((𝐹''''𝐴) = 𝒫 ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹)

Proof of Theorem afv2ndefb
StepHypRef Expression
1 pwuninel 8026 . . 3 ¬ 𝒫 ran 𝐹 ∈ ran 𝐹
2 df-nel 3048 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
3 eleq1 2826 . . . . 5 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ran 𝐹 ∈ ran 𝐹))
43notbid 321 . . . 4 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
52, 4syl5bb 286 . . 3 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
61, 5mpbiri 261 . 2 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹)
7 funressndmafv2rn 44402 . . . . 5 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
87con3i 157 . . . 4 (¬ (𝐹''''𝐴) ∈ ran 𝐹 → ¬ 𝐹 defAt 𝐴)
92, 8sylbi 220 . . 3 ((𝐹''''𝐴) ∉ ran 𝐹 → ¬ 𝐹 defAt 𝐴)
10 ndfatafv2 44390 . . 3 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
119, 10syl 17 . 2 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
126, 11impbii 212 1 ((𝐹''''𝐴) = 𝒫 ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209   = wceq 1543  wcel 2111  wnel 3047  𝒫 cpw 4522   cuni 4828  ran crn 5561   defAt wdfat 44295  ''''cafv2 44387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pr 5331  ax-un 7532
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-nel 3048  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3417  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-br 5063  df-opab 5125  df-id 5464  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-iota 6347  df-fun 6391  df-dfat 44298  df-afv2 44388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator