![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ndefb | Structured version Visualization version GIF version |
Description: Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.) |
Ref | Expression |
---|---|
afv2ndefb | ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuninel 8211 | . . 3 ⊢ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹 | |
2 | df-nel 3051 | . . . 4 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹) | |
3 | eleq1 2826 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) | |
4 | 3 | notbid 318 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
5 | 2, 4 | bitrid 283 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
6 | 1, 5 | mpbiri 258 | . 2 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) |
7 | funressndmafv2rn 45529 | . . . . 5 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹) | |
8 | 7 | con3i 154 | . . . 4 ⊢ (¬ (𝐹''''𝐴) ∈ ran 𝐹 → ¬ 𝐹 defAt 𝐴) |
9 | 2, 8 | sylbi 216 | . . 3 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → ¬ 𝐹 defAt 𝐴) |
10 | ndfatafv2 45517 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) |
12 | 6, 11 | impbii 208 | 1 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∉ wnel 3050 𝒫 cpw 4565 ∪ cuni 4870 ran crn 5639 defAt wdfat 45422 ''''cafv2 45514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6453 df-fun 6503 df-dfat 45425 df-afv2 45515 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |