Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ndefb Structured version   Visualization version   GIF version

Theorem afv2ndefb 47220
Description: Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
afv2ndefb ((𝐹''''𝐴) = 𝒫 ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹)

Proof of Theorem afv2ndefb
StepHypRef Expression
1 pwuninel 8279 . . 3 ¬ 𝒫 ran 𝐹 ∈ ran 𝐹
2 df-nel 3038 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
3 eleq1 2823 . . . . 5 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ran 𝐹 ∈ ran 𝐹))
43notbid 318 . . . 4 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
52, 4bitrid 283 . . 3 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
61, 5mpbiri 258 . 2 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹)
7 funressndmafv2rn 47219 . . . . 5 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
87con3i 154 . . . 4 (¬ (𝐹''''𝐴) ∈ ran 𝐹 → ¬ 𝐹 defAt 𝐴)
92, 8sylbi 217 . . 3 ((𝐹''''𝐴) ∉ ran 𝐹 → ¬ 𝐹 defAt 𝐴)
10 ndfatafv2 47207 . . 3 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
119, 10syl 17 . 2 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
126, 11impbii 209 1 ((𝐹''''𝐴) = 𝒫 ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wnel 3037  𝒫 cpw 4580   cuni 4888  ran crn 5660   defAt wdfat 47112  ''''cafv2 47204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-dfat 47115  df-afv2 47205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator