![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2nrn | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
ndfatafv2nrn | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndfatafv2 46504 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
2 | pwuninel 8272 | . . 3 ⊢ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹 | |
3 | df-nel 3042 | . . . 4 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹) | |
4 | eleq1 2816 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) | |
5 | 4 | notbid 318 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
6 | 3, 5 | bitrid 283 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
7 | 2, 6 | mpbiri 258 | . 2 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) |
8 | 1, 7 | syl 17 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∉ wnel 3041 𝒫 cpw 4598 ∪ cuni 4903 ran crn 5673 defAt wdfat 46409 ''''cafv2 46501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nel 3042 df-rab 3428 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-uni 4904 df-afv2 46502 |
This theorem is referenced by: ndmafv2nrn 46515 nfunsnafv2 46518 dfatafv2rnb 46520 tz6.12-2-afv2 46530 |
Copyright terms: Public domain | W3C validator |