Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndfatafv2nrn Structured version   Visualization version   GIF version

Theorem ndfatafv2nrn 46514
Description: The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
ndfatafv2nrn 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)

Proof of Theorem ndfatafv2nrn
StepHypRef Expression
1 ndfatafv2 46504 . 2 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
2 pwuninel 8272 . . 3 ¬ 𝒫 ran 𝐹 ∈ ran 𝐹
3 df-nel 3042 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
4 eleq1 2816 . . . . 5 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ran 𝐹 ∈ ran 𝐹))
54notbid 318 . . . 4 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
63, 5bitrid 283 . . 3 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
72, 6mpbiri 258 . 2 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹)
81, 7syl 17 1 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wnel 3041  𝒫 cpw 4598   cuni 4903  ran crn 5673   defAt wdfat 46409  ''''cafv2 46501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nel 3042  df-rab 3428  df-v 3471  df-un 3949  df-in 3951  df-ss 3961  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-uni 4904  df-afv2 46502
This theorem is referenced by:  ndmafv2nrn  46515  nfunsnafv2  46518  dfatafv2rnb  46520  tz6.12-2-afv2  46530
  Copyright terms: Public domain W3C validator