| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndfatafv2nrn | Structured version Visualization version GIF version | ||
| Description: The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| ndfatafv2nrn | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndfatafv2 47223 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
| 2 | pwuninel 8300 | . . 3 ⊢ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹 | |
| 3 | df-nel 3047 | . . . 4 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹) | |
| 4 | eleq1 2829 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) | |
| 5 | 4 | notbid 318 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
| 6 | 3, 5 | bitrid 283 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ∪ ran 𝐹 ∈ ran 𝐹)) |
| 7 | 2, 6 | mpbiri 258 | . 2 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∉ wnel 3046 𝒫 cpw 4600 ∪ cuni 4907 ran crn 5686 defAt wdfat 47128 ''''cafv2 47220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nel 3047 df-rab 3437 df-v 3482 df-un 3956 df-in 3958 df-ss 3968 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-uni 4908 df-afv2 47221 |
| This theorem is referenced by: ndmafv2nrn 47234 nfunsnafv2 47237 dfatafv2rnb 47239 tz6.12-2-afv2 47249 |
| Copyright terms: Public domain | W3C validator |