Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndfatafv2nrn Structured version   Visualization version   GIF version

Theorem ndfatafv2nrn 44600
Description: The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
ndfatafv2nrn 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)

Proof of Theorem ndfatafv2nrn
StepHypRef Expression
1 ndfatafv2 44590 . 2 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
2 pwuninel 8062 . . 3 ¬ 𝒫 ran 𝐹 ∈ ran 𝐹
3 df-nel 3049 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
4 eleq1 2826 . . . . 5 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝒫 ran 𝐹 ∈ ran 𝐹))
54notbid 317 . . . 4 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
63, 5syl5bb 282 . . 3 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ 𝒫 ran 𝐹 ∈ ran 𝐹))
72, 6mpbiri 257 . 2 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹)
81, 7syl 17 1 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wnel 3048  𝒫 cpw 4530   cuni 4836  ran crn 5581   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nel 3049  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-afv2 44588
This theorem is referenced by:  ndmafv2nrn  44601  nfunsnafv2  44604  dfatafv2rnb  44606  tz6.12-2-afv2  44616
  Copyright terms: Public domain W3C validator