| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20defat | Structured version Visualization version GIF version | ||
| Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv20defat | ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndfatafv2 47240 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
| 2 | pwne0 5327 | . . . . 5 ⊢ 𝒫 ∪ ran 𝐹 ≠ ∅ | |
| 3 | 2 | neii 2934 | . . . 4 ⊢ ¬ 𝒫 ∪ ran 𝐹 = ∅ |
| 4 | eqeq1 2739 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ 𝒫 ∪ ran 𝐹 = ∅)) | |
| 5 | 3, 4 | mtbiri 327 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ¬ (𝐹''''𝐴) = ∅) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) = ∅) |
| 7 | 6 | con4i 114 | 1 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 ran crn 5655 defAt wdfat 47145 ''''cafv2 47237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-afv2 47238 |
| This theorem is referenced by: afv20fv0 47292 |
| Copyright terms: Public domain | W3C validator |