![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20defat | Structured version Visualization version GIF version |
Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv20defat | ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndfatafv2 42107 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
2 | pwne0 5059 | . . . . 5 ⊢ 𝒫 ∪ ran 𝐹 ≠ ∅ | |
3 | 2 | neii 3001 | . . . 4 ⊢ ¬ 𝒫 ∪ ran 𝐹 = ∅ |
4 | eqeq1 2829 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ 𝒫 ∪ ran 𝐹 = ∅)) | |
5 | 3, 4 | mtbiri 319 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ¬ (𝐹''''𝐴) = ∅) |
6 | 1, 5 | syl 17 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) = ∅) |
7 | 6 | con4i 114 | 1 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1656 ∅c0 4146 𝒫 cpw 4380 ∪ cuni 4660 ran crn 5347 defAt wdfat 42012 ''''cafv2 42104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-nul 5015 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-afv2 42105 |
This theorem is referenced by: afv20fv0 42159 |
Copyright terms: Public domain | W3C validator |