![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20defat | Structured version Visualization version GIF version |
Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv20defat | ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndfatafv2 45905 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
2 | pwne0 5354 | . . . . 5 ⊢ 𝒫 ∪ ran 𝐹 ≠ ∅ | |
3 | 2 | neii 2942 | . . . 4 ⊢ ¬ 𝒫 ∪ ran 𝐹 = ∅ |
4 | eqeq1 2736 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ 𝒫 ∪ ran 𝐹 = ∅)) | |
5 | 3, 4 | mtbiri 326 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ¬ (𝐹''''𝐴) = ∅) |
6 | 1, 5 | syl 17 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) = ∅) |
7 | 6 | con4i 114 | 1 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 ran crn 5676 defAt wdfat 45810 ''''cafv2 45902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-afv2 45903 |
This theorem is referenced by: afv20fv0 45957 |
Copyright terms: Public domain | W3C validator |