Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20defat | Structured version Visualization version GIF version |
Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv20defat | ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndfatafv2 44590 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | |
2 | pwne0 5274 | . . . . 5 ⊢ 𝒫 ∪ ran 𝐹 ≠ ∅ | |
3 | 2 | neii 2944 | . . . 4 ⊢ ¬ 𝒫 ∪ ran 𝐹 = ∅ |
4 | eqeq1 2742 | . . . 4 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ 𝒫 ∪ ran 𝐹 = ∅)) | |
5 | 3, 4 | mtbiri 326 | . . 3 ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 → ¬ (𝐹''''𝐴) = ∅) |
6 | 1, 5 | syl 17 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) = ∅) |
7 | 6 | con4i 114 | 1 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ran crn 5581 defAt wdfat 44495 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-afv2 44588 |
This theorem is referenced by: afv20fv0 44642 |
Copyright terms: Public domain | W3C validator |