Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv20defat Structured version   Visualization version   GIF version

Theorem afv20defat 47242
Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv20defat ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴)

Proof of Theorem afv20defat
StepHypRef Expression
1 ndfatafv2 47221 . . 3 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
2 pwne0 5293 . . . . 5 𝒫 ran 𝐹 ≠ ∅
32neii 2928 . . . 4 ¬ 𝒫 ran 𝐹 = ∅
4 eqeq1 2734 . . . 4 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ 𝒫 ran 𝐹 = ∅))
53, 4mtbiri 327 . . 3 ((𝐹''''𝐴) = 𝒫 ran 𝐹 → ¬ (𝐹''''𝐴) = ∅)
61, 5syl 17 . 2 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) = ∅)
76con4i 114 1 ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  c0 4281  𝒫 cpw 4548   cuni 4857  ran crn 5615   defAt wdfat 47126  ''''cafv2 47218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3436  df-dif 3903  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-afv2 47219
This theorem is referenced by:  afv20fv0  47273
  Copyright terms: Public domain W3C validator