| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2iota | Structured version Visualization version GIF version | ||
| Description: If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹‘𝐴)). (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatafv2iota | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47238 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
| 2 | iftrue 4506 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = (℩𝑥𝐴𝐹𝑥)) | |
| 3 | 1, 2 | eqtrid 2782 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4500 𝒫 cpw 4575 ∪ cuni 4883 class class class wbr 5119 ran crn 5655 ℩cio 6482 defAt wdfat 47145 ''''cafv2 47237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 df-afv2 47238 |
| This theorem is referenced by: dfatafv2ex 47242 funressndmafv2rn 47252 afv2eu 47267 afv2res 47268 tz6.12-afv2 47269 dfafv23 47282 rlimdmafv2 47287 |
| Copyright terms: Public domain | W3C validator |