Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2iota Structured version   Visualization version   GIF version

Theorem dfatafv2iota 47222
Description: If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹𝐴)). (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2iota (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfatafv2iota
StepHypRef Expression
1 df-afv2 47221 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iftrue 4531 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = (℩𝑥𝐴𝐹𝑥))
31, 2eqtrid 2789 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4525  𝒫 cpw 4600   cuni 4907   class class class wbr 5143  ran crn 5686  cio 6512   defAt wdfat 47128  ''''cafv2 47220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-if 4526  df-afv2 47221
This theorem is referenced by:  dfatafv2ex  47225  funressndmafv2rn  47235  afv2eu  47250  afv2res  47251  tz6.12-afv2  47252  dfafv23  47265  rlimdmafv2  47270
  Copyright terms: Public domain W3C validator