Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2iota Structured version   Visualization version   GIF version

Theorem dfatafv2iota 47125
Description: If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹𝐴)). (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2iota (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfatafv2iota
StepHypRef Expression
1 df-afv2 47124 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iftrue 4554 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = (℩𝑥𝐴𝐹𝑥))
31, 2eqtrid 2792 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ifcif 4548  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  ran crn 5701  cio 6523   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-if 4549  df-afv2 47124
This theorem is referenced by:  dfatafv2ex  47128  funressndmafv2rn  47138  afv2eu  47153  afv2res  47154  tz6.12-afv2  47155  dfafv23  47168  rlimdmafv2  47173
  Copyright terms: Public domain W3C validator