Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2iota Structured version   Visualization version   GIF version

Theorem dfatafv2iota 47211
Description: If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹𝐴)). (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2iota (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfatafv2iota
StepHypRef Expression
1 df-afv2 47210 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iftrue 4494 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = (℩𝑥𝐴𝐹𝑥))
31, 2eqtrid 2776 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4488  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  ran crn 5639  cio 6462   defAt wdfat 47117  ''''cafv2 47209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-if 4489  df-afv2 47210
This theorem is referenced by:  dfatafv2ex  47214  funressndmafv2rn  47224  afv2eu  47239  afv2res  47240  tz6.12-afv2  47241  dfafv23  47254  rlimdmafv2  47259
  Copyright terms: Public domain W3C validator