![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2iota | Structured version Visualization version GIF version |
Description: If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹‘𝐴)). (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2iota | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 42105 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iftrue 4314 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = (℩𝑥𝐴𝐹𝑥)) | |
3 | 1, 2 | syl5eq 2873 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ifcif 4308 𝒫 cpw 4380 ∪ cuni 4660 class class class wbr 4875 ran crn 5347 ℩cio 6088 defAt wdfat 42012 ''''cafv2 42104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-if 4309 df-afv2 42105 |
This theorem is referenced by: dfatafv2ex 42109 funressndmafv2rn 42119 afv2eu 42134 afv2res 42135 tz6.12-afv2 42136 dfafv23 42149 rlimdmafv2 42154 |
Copyright terms: Public domain | W3C validator |