Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2iota | Structured version Visualization version GIF version |
Description: If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹‘𝐴)). (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2iota | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 44701 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iftrue 4465 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = (℩𝑥𝐴𝐹𝑥)) | |
3 | 1, 2 | eqtrid 2790 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4459 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ran crn 5590 ℩cio 6389 defAt wdfat 44608 ''''cafv2 44700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-if 4460 df-afv2 44701 |
This theorem is referenced by: dfatafv2ex 44705 funressndmafv2rn 44715 afv2eu 44730 afv2res 44731 tz6.12-afv2 44732 dfafv23 44745 rlimdmafv2 44750 |
Copyright terms: Public domain | W3C validator |