Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2iota | Structured version Visualization version GIF version |
Description: If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹‘𝐴)). (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2iota | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 45041 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iftrue 4478 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = (℩𝑥𝐴𝐹𝑥)) | |
3 | 1, 2 | eqtrid 2788 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ifcif 4472 𝒫 cpw 4546 ∪ cuni 4851 class class class wbr 5089 ran crn 5615 ℩cio 6423 defAt wdfat 44948 ''''cafv2 45040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-if 4473 df-afv2 45041 |
This theorem is referenced by: dfatafv2ex 45045 funressndmafv2rn 45055 afv2eu 45070 afv2res 45071 tz6.12-afv2 45072 dfafv23 45085 rlimdmafv2 45090 |
Copyright terms: Public domain | W3C validator |