| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nel02 | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. (Contributed by Peter Mazsa, 4-Jan-2018.) |
| Ref | Expression |
|---|---|
| nel02 | ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4285 | . 2 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2820 | . 2 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: iresn0n0 6002 0mpo0 7429 chnccat 18532 nbgr0vtx 29333 disjxun0 32554 disjlem14 38906 oe0rif 43388 clnbgr0vtx 47946 iineq0 48930 nelsubclem 49178 |
| Copyright terms: Public domain | W3C validator |