| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nel02 | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. (Contributed by Peter Mazsa, 4-Jan-2018.) |
| Ref | Expression |
|---|---|
| nel02 | ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4338 | . 2 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2830 | . 2 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-dif 3954 df-nul 4334 |
| This theorem is referenced by: iresn0n0 6072 0mpo0 7516 nbgr0vtx 29372 disjxun0 32587 disjlem14 38799 oe0rif 43298 clnbgr0vtx 47822 |
| Copyright terms: Public domain | W3C validator |