MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nel02 Structured version   Visualization version   GIF version

Theorem nel02 4339
Description: The empty set has no elements. (Contributed by Peter Mazsa, 4-Jan-2018.)
Assertion
Ref Expression
nel02 (𝐴 = ∅ → ¬ 𝐵𝐴)

Proof of Theorem nel02
StepHypRef Expression
1 noel 4338 . 2 ¬ 𝐵 ∈ ∅
2 eleq2 2830 . 2 (𝐴 = ∅ → (𝐵𝐴𝐵 ∈ ∅))
31, 2mtbiri 327 1 (𝐴 = ∅ → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  c0 4333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-dif 3954  df-nul 4334
This theorem is referenced by:  iresn0n0  6072  0mpo0  7516  nbgr0vtx  29372  disjxun0  32587  disjlem14  38799  oe0rif  43298  clnbgr0vtx  47822
  Copyright terms: Public domain W3C validator