![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxun0 | Structured version Visualization version GIF version |
Description: Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
disjxun0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) |
Ref | Expression |
---|---|
disjxun0 | ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjxun0.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) | |
2 | nel02 4332 | . . . . 5 ⊢ (𝐶 = ∅ → ¬ 𝑦 ∈ 𝐶) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑦 ∈ 𝐶) |
4 | 3 | rmounid 32371 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | 4 | albidv 1915 | . 2 ⊢ (𝜑 → (∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
6 | df-disj 5115 | . 2 ⊢ (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
7 | df-disj 5115 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∃*wrmo 3362 ∪ cun 3942 ∅c0 4322 Disj wdisj 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-clab 2703 df-cleq 2717 df-clel 2802 df-rmo 3363 df-v 3463 df-dif 3947 df-un 3949 df-nul 4323 df-disj 5115 |
This theorem is referenced by: tocyccntz 32957 |
Copyright terms: Public domain | W3C validator |