|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxun0 | Structured version Visualization version GIF version | ||
| Description: Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023.) | 
| Ref | Expression | 
|---|---|
| disjxun0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) | 
| Ref | Expression | 
|---|---|
| disjxun0 | ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | disjxun0.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) | |
| 2 | nel02 4339 | . . . . 5 ⊢ (𝐶 = ∅ → ¬ 𝑦 ∈ 𝐶) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑦 ∈ 𝐶) | 
| 4 | 3 | rmounid 32514 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | 
| 5 | 4 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | 
| 6 | df-disj 5111 | . 2 ⊢ (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
| 7 | df-disj 5111 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∃*wrmo 3379 ∪ cun 3949 ∅c0 4333 Disj wdisj 5110 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-rmo 3380 df-v 3482 df-dif 3954 df-un 3956 df-nul 4334 df-disj 5111 | 
| This theorem is referenced by: tocyccntz 33164 | 
| Copyright terms: Public domain | W3C validator |