Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxun0 Structured version   Visualization version   GIF version

Theorem disjxun0 32510
Description: Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypothesis
Ref Expression
disjxun0.1 ((𝜑𝑥𝐵) → 𝐶 = ∅)
Assertion
Ref Expression
disjxun0 (𝜑 → (Disj 𝑥 ∈ (𝐴𝐵)𝐶Disj 𝑥𝐴 𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjxun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 disjxun0.1 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 = ∅)
2 nel02 4305 . . . . 5 (𝐶 = ∅ → ¬ 𝑦𝐶)
31, 2syl 17 . . . 4 ((𝜑𝑥𝐵) → ¬ 𝑦𝐶)
43rmounid 32431 . . 3 (𝜑 → (∃*𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ ∃*𝑥𝐴 𝑦𝐶))
54albidv 1920 . 2 (𝜑 → (∀𝑦∃*𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶))
6 df-disj 5078 . 2 (Disj 𝑥 ∈ (𝐴𝐵)𝐶 ↔ ∀𝑦∃*𝑥 ∈ (𝐴𝐵)𝑦𝐶)
7 df-disj 5078 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶)
85, 6, 73bitr4g 314 1 (𝜑 → (Disj 𝑥 ∈ (𝐴𝐵)𝐶Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wrmo 3355  cun 3915  c0 4299  Disj wdisj 5077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-rmo 3356  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-disj 5078
This theorem is referenced by:  tocyccntz  33108
  Copyright terms: Public domain W3C validator