Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxun0 | Structured version Visualization version GIF version |
Description: Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
disjxun0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) |
Ref | Expression |
---|---|
disjxun0 | ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjxun0.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) | |
2 | nel02 4263 | . . . . 5 ⊢ (𝐶 = ∅ → ¬ 𝑦 ∈ 𝐶) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑦 ∈ 𝐶) |
4 | 3 | rmounid 30744 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | 4 | albidv 1924 | . 2 ⊢ (𝜑 → (∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
6 | df-disj 5036 | . 2 ⊢ (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
7 | df-disj 5036 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∃*wrmo 3066 ∪ cun 3881 ∅c0 4253 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-rmo 3071 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-disj 5036 |
This theorem is referenced by: tocyccntz 31313 |
Copyright terms: Public domain | W3C validator |