Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxun0 | Structured version Visualization version GIF version |
Description: Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
disjxun0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) |
Ref | Expression |
---|---|
disjxun0 | ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjxun0.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) | |
2 | nel02 4280 | . . . . 5 ⊢ (𝐶 = ∅ → ¬ 𝑦 ∈ 𝐶) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑦 ∈ 𝐶) |
4 | 3 | rmounid 31132 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | 4 | albidv 1922 | . 2 ⊢ (𝜑 → (∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
6 | df-disj 5059 | . 2 ⊢ (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∀𝑦∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
7 | df-disj 5059 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∃*wrmo 3348 ∪ cun 3896 ∅c0 4270 Disj wdisj 5058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-rmo 3349 df-v 3443 df-dif 3901 df-un 3903 df-nul 4271 df-disj 5059 |
This theorem is referenced by: tocyccntz 31698 |
Copyright terms: Public domain | W3C validator |