Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0rif Structured version   Visualization version   GIF version

Theorem oe0rif 43281
Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oe0rif (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))

Proof of Theorem oe0rif
StepHypRef Expression
1 oe0m 8485 . 2 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
2 nel02 4305 . . . . . 6 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
32iffalsed 4502 . . . . 5 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o)
4 difeq2 4086 . . . . . 6 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
5 dif0 4344 . . . . . 6 (1o ∖ ∅) = 1o
64, 5eqtrdi 2781 . . . . 5 (𝐴 = ∅ → (1o𝐴) = 1o)
73, 6eqtr4d 2768 . . . 4 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
87adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
9 iftrue 4497 . . . . 5 (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
109adantl 481 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
11 eloni 6345 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
12 ordgt0ge1 8460 . . . . . . 7 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
1413biimpa 476 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o𝐴)
15 ssdif0 4332 . . . . 5 (1o𝐴 ↔ (1o𝐴) = ∅)
1614, 15sylib 218 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o𝐴) = ∅)
1710, 16eqtr4d 2768 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
18 on0eqel 6461 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
198, 17, 18mpjaodan 960 . 2 (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
201, 19eqtr4d 2768 1 (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  wss 3917  c0 4299  ifcif 4491  Ord word 6334  Oncon0 6335  (class class class)co 7390  1oc1o 8430  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oexp 8443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator