| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oe0rif | Structured version Visualization version GIF version | ||
| Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oe0rif | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oe0m 8482 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
| 2 | nel02 4302 | . . . . . 6 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) | |
| 3 | 2 | iffalsed 4499 | . . . . 5 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o) |
| 4 | difeq2 4083 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
| 5 | dif0 4341 | . . . . . 6 ⊢ (1o ∖ ∅) = 1o | |
| 6 | 4, 5 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
| 7 | 3, 6 | eqtr4d 2767 | . . . 4 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 9 | iftrue 4494 | . . . . 5 ⊢ (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅) |
| 11 | eloni 6342 | . . . . . . 7 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 12 | ordgt0ge1 8457 | . . . . . . 7 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| 14 | 13 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐴) |
| 15 | ssdif0 4329 | . . . . 5 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
| 16 | 14, 15 | sylib 218 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o ∖ 𝐴) = ∅) |
| 17 | 10, 16 | eqtr4d 2767 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 18 | on0eqel 6458 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 19 | 8, 17, 18 | mpjaodan 960 | . 2 ⊢ (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 20 | 1, 19 | eqtr4d 2767 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 ifcif 4488 Ord word 6331 Oncon0 6332 (class class class)co 7387 1oc1o 8427 ↑o coe 8433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oexp 8440 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |