Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0rif Structured version   Visualization version   GIF version

Theorem oe0rif 43309
Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oe0rif (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))

Proof of Theorem oe0rif
StepHypRef Expression
1 oe0m 8530 . 2 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
2 nel02 4314 . . . . . 6 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
32iffalsed 4511 . . . . 5 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o)
4 difeq2 4095 . . . . . 6 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
5 dif0 4353 . . . . . 6 (1o ∖ ∅) = 1o
64, 5eqtrdi 2786 . . . . 5 (𝐴 = ∅ → (1o𝐴) = 1o)
73, 6eqtr4d 2773 . . . 4 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
87adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
9 iftrue 4506 . . . . 5 (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
109adantl 481 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
11 eloni 6362 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
12 ordgt0ge1 8505 . . . . . . 7 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
1413biimpa 476 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o𝐴)
15 ssdif0 4341 . . . . 5 (1o𝐴 ↔ (1o𝐴) = ∅)
1614, 15sylib 218 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o𝐴) = ∅)
1710, 16eqtr4d 2773 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
18 on0eqel 6478 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
198, 17, 18mpjaodan 960 . 2 (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
201, 19eqtr4d 2773 1 (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3923  wss 3926  c0 4308  ifcif 4500  Ord word 6351  Oncon0 6352  (class class class)co 7405  1oc1o 8473  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oexp 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator