Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0rif Structured version   Visualization version   GIF version

Theorem oe0rif 42500
Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oe0rif (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))

Proof of Theorem oe0rif
StepHypRef Expression
1 oe0m 8524 . 2 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
2 nel02 4332 . . . . . 6 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
32iffalsed 4539 . . . . 5 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o)
4 difeq2 4116 . . . . . 6 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
5 dif0 4372 . . . . . 6 (1o ∖ ∅) = 1o
64, 5eqtrdi 2787 . . . . 5 (𝐴 = ∅ → (1o𝐴) = 1o)
73, 6eqtr4d 2774 . . . 4 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
87adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
9 iftrue 4534 . . . . 5 (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
109adantl 481 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
11 eloni 6374 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
12 ordgt0ge1 8499 . . . . . . 7 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
1413biimpa 476 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o𝐴)
15 ssdif0 4363 . . . . 5 (1o𝐴 ↔ (1o𝐴) = ∅)
1614, 15sylib 217 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o𝐴) = ∅)
1710, 16eqtr4d 2774 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
18 on0eqel 6488 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
198, 17, 18mpjaodan 956 . 2 (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
201, 19eqtr4d 2774 1 (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  cdif 3945  wss 3948  c0 4322  ifcif 4528  Ord word 6363  Oncon0 6364  (class class class)co 7412  1oc1o 8465  o coe 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oexp 8478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator