| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oe0rif | Structured version Visualization version GIF version | ||
| Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oe0rif | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oe0m 8433 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
| 2 | nel02 4289 | . . . . . 6 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) | |
| 3 | 2 | iffalsed 4486 | . . . . 5 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o) |
| 4 | difeq2 4070 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
| 5 | dif0 4328 | . . . . . 6 ⊢ (1o ∖ ∅) = 1o | |
| 6 | 4, 5 | eqtrdi 2782 | . . . . 5 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
| 7 | 3, 6 | eqtr4d 2769 | . . . 4 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 9 | iftrue 4481 | . . . . 5 ⊢ (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅) |
| 11 | eloni 6316 | . . . . . . 7 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 12 | ordgt0ge1 8408 | . . . . . . 7 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| 14 | 13 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐴) |
| 15 | ssdif0 4316 | . . . . 5 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
| 16 | 14, 15 | sylib 218 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o ∖ 𝐴) = ∅) |
| 17 | 10, 16 | eqtr4d 2769 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 18 | on0eqel 6431 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 19 | 8, 17, 18 | mpjaodan 960 | . 2 ⊢ (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 20 | 1, 19 | eqtr4d 2769 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4283 ifcif 4475 Ord word 6305 Oncon0 6306 (class class class)co 7346 1oc1o 8378 ↑o coe 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oexp 8391 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |