Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0rif Structured version   Visualization version   GIF version

Theorem oe0rif 42490
Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oe0rif (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))

Proof of Theorem oe0rif
StepHypRef Expression
1 oe0m 8513 . 2 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
2 nel02 4324 . . . . . 6 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
32iffalsed 4531 . . . . 5 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o)
4 difeq2 4108 . . . . . 6 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
5 dif0 4364 . . . . . 6 (1o ∖ ∅) = 1o
64, 5eqtrdi 2780 . . . . 5 (𝐴 = ∅ → (1o𝐴) = 1o)
73, 6eqtr4d 2767 . . . 4 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
87adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
9 iftrue 4526 . . . . 5 (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
109adantl 481 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
11 eloni 6364 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
12 ordgt0ge1 8488 . . . . . . 7 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
1413biimpa 476 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o𝐴)
15 ssdif0 4355 . . . . 5 (1o𝐴 ↔ (1o𝐴) = ∅)
1614, 15sylib 217 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o𝐴) = ∅)
1710, 16eqtr4d 2767 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
18 on0eqel 6478 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
198, 17, 18mpjaodan 955 . 2 (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
201, 19eqtr4d 2767 1 (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cdif 3937  wss 3940  c0 4314  ifcif 4520  Ord word 6353  Oncon0 6354  (class class class)co 7401  1oc1o 8454  o coe 8460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oexp 8467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator