![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oe0rif | Structured version Visualization version GIF version |
Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oe0rif | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oe0m 8513 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
2 | nel02 4324 | . . . . . 6 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) | |
3 | 2 | iffalsed 4531 | . . . . 5 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o) |
4 | difeq2 4108 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
5 | dif0 4364 | . . . . . 6 ⊢ (1o ∖ ∅) = 1o | |
6 | 4, 5 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
7 | 3, 6 | eqtr4d 2767 | . . . 4 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
9 | iftrue 4526 | . . . . 5 ⊢ (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅) | |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅) |
11 | eloni 6364 | . . . . . . 7 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
12 | ordgt0ge1 8488 | . . . . . . 7 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
14 | 13 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐴) |
15 | ssdif0 4355 | . . . . 5 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
16 | 14, 15 | sylib 217 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o ∖ 𝐴) = ∅) |
17 | 10, 16 | eqtr4d 2767 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
18 | on0eqel 6478 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
19 | 8, 17, 18 | mpjaodan 955 | . 2 ⊢ (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
20 | 1, 19 | eqtr4d 2767 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 ⊆ wss 3940 ∅c0 4314 ifcif 4520 Ord word 6353 Oncon0 6354 (class class class)co 7401 1oc1o 8454 ↑o coe 8460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oexp 8467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |