Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0rif Structured version   Visualization version   GIF version

Theorem oe0rif 43324
Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oe0rif (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))

Proof of Theorem oe0rif
StepHypRef Expression
1 oe0m 8433 . 2 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
2 nel02 4289 . . . . . 6 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
32iffalsed 4486 . . . . 5 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o)
4 difeq2 4070 . . . . . 6 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
5 dif0 4328 . . . . . 6 (1o ∖ ∅) = 1o
64, 5eqtrdi 2782 . . . . 5 (𝐴 = ∅ → (1o𝐴) = 1o)
73, 6eqtr4d 2769 . . . 4 (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
87adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
9 iftrue 4481 . . . . 5 (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
109adantl 481 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅)
11 eloni 6316 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
12 ordgt0ge1 8408 . . . . . . 7 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
1413biimpa 476 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o𝐴)
15 ssdif0 4316 . . . . 5 (1o𝐴 ↔ (1o𝐴) = ∅)
1614, 15sylib 218 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o𝐴) = ∅)
1710, 16eqtr4d 2769 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
18 on0eqel 6431 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
198, 17, 18mpjaodan 960 . 2 (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o𝐴))
201, 19eqtr4d 2769 1 (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cdif 3899  wss 3902  c0 4283  ifcif 4475  Ord word 6305  Oncon0 6306  (class class class)co 7346  1oc1o 8378  o coe 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oexp 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator