![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oe0rif | Structured version Visualization version GIF version |
Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oe0rif | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oe0m 8554 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
2 | nel02 4344 | . . . . . 6 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) | |
3 | 2 | iffalsed 4541 | . . . . 5 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o) |
4 | difeq2 4129 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
5 | dif0 4383 | . . . . . 6 ⊢ (1o ∖ ∅) = 1o | |
6 | 4, 5 | eqtrdi 2790 | . . . . 5 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
7 | 3, 6 | eqtr4d 2777 | . . . 4 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
9 | iftrue 4536 | . . . . 5 ⊢ (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅) | |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅) |
11 | eloni 6395 | . . . . . . 7 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
12 | ordgt0ge1 8529 | . . . . . . 7 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
14 | 13 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐴) |
15 | ssdif0 4371 | . . . . 5 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
16 | 14, 15 | sylib 218 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o ∖ 𝐴) = ∅) |
17 | 10, 16 | eqtr4d 2777 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
18 | on0eqel 6509 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
19 | 8, 17, 18 | mpjaodan 960 | . 2 ⊢ (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
20 | 1, 19 | eqtr4d 2777 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 ifcif 4530 Ord word 6384 Oncon0 6385 (class class class)co 7430 1oc1o 8497 ↑o coe 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-suc 6391 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oexp 8510 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |