| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oe0rif | Structured version Visualization version GIF version | ||
| Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oe0rif | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oe0m 8485 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
| 2 | nel02 4305 | . . . . . 6 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) | |
| 3 | 2 | iffalsed 4502 | . . . . 5 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = 1o) |
| 4 | difeq2 4086 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
| 5 | dif0 4344 | . . . . . 6 ⊢ (1o ∖ ∅) = 1o | |
| 6 | 4, 5 | eqtrdi 2781 | . . . . 5 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
| 7 | 3, 6 | eqtr4d 2768 | . . . 4 ⊢ (𝐴 = ∅ → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 9 | iftrue 4497 | . . . . 5 ⊢ (∅ ∈ 𝐴 → if(∅ ∈ 𝐴, ∅, 1o) = ∅) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = ∅) |
| 11 | eloni 6345 | . . . . . . 7 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 12 | ordgt0ge1 8460 | . . . . . . 7 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| 14 | 13 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → 1o ⊆ 𝐴) |
| 15 | ssdif0 4332 | . . . . 5 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
| 16 | 14, 15 | sylib 218 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (1o ∖ 𝐴) = ∅) |
| 17 | 10, 16 | eqtr4d 2768 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 18 | on0eqel 6461 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 19 | 8, 17, 18 | mpjaodan 960 | . 2 ⊢ (𝐴 ∈ On → if(∅ ∈ 𝐴, ∅, 1o) = (1o ∖ 𝐴)) |
| 20 | 1, 19 | eqtr4d 2768 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 ifcif 4491 Ord word 6334 Oncon0 6335 (class class class)co 7390 1oc1o 8430 ↑o coe 8436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oexp 8443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |