| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4285 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2820 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| 4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: ne0i 4288 n0ii 4290 oprcl 4848 disjss3 5088 elfvdm 6856 mptrcl 6938 isomin 7271 ovrcl 7387 elfvov1 7388 elfvov2 7389 oalimcl 8475 omlimcl 8493 nnaordex2 8554 oaabs2 8564 ecexr 8627 elpmi 8770 elmapex 8772 pmresg 8794 pmsspw 8801 ixpssmap2g 8851 ixpssmapg 8852 resixpfo 8860 php3 9118 cantnfp1lem2 9569 cantnflem1 9579 cnfcom2lem 9591 rankxplim2 9773 rankxplim3 9774 cardlim 9865 alephnbtwn 9962 ttukeylem5 10404 r1wunlim 10628 ssnn0fi 13892 ruclem13 16151 ramtub 16924 elbasfv 17126 elbasov 17127 restsspw 17335 homarcl 17935 grpidval 18569 odlem2 19451 efgrelexlema 19661 subcmn 19749 dvdsrval 20279 elocv 21605 pf1rcl 22264 matrcl 22327 0top 22898 ppttop 22922 pptbas 22923 restrcl 23072 ssrest 23091 iscnp2 23154 lmmo 23295 zfbas 23811 rnelfmlem 23867 isfcls 23924 isnghm 24638 iscau2 25204 itg2cnlem1 25689 itgsubstlem 25982 dchrrcl 27178 clwwlknnn 30013 0ringsubrg 33218 ssdifidllem 33421 ssmxidllem 33438 eulerpartlemgvv 34389 indispconn 35278 cvmtop1 35304 cvmtop2 35305 mrsub0 35560 mrsubf 35561 mrsubccat 35562 mrsubcn 35563 mrsubco 35565 mrsubvrs 35566 msubf 35576 mclsrcl 35605 funpartlem 35984 tailfb 36419 nlpineqsn 37450 atbase 39336 llnbase 39556 lplnbase 39581 lvolbase 39625 osumcllem4N 40006 pexmidlem1N 40017 lhpbase 40045 mapco2g 42755 wepwsolem 43083 onov0suclim 43315 uneqsn 44066 relpmin 44993 ssfiunibd 45358 hoicvr 46594 0nelsetpreimafv 47429 termchomn0 49524 |
| Copyright terms: Public domain | W3C validator |