| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2823 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| 4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: ne0i 4316 n0ii 4318 oprcl 4875 disjss3 5118 elfvdm 6912 mptrcl 6994 isomin 7329 ovrcl 7444 elfvov1 7445 elfvov2 7446 oalimcl 8570 omlimcl 8588 nnaordex2 8649 oaabs2 8659 ecexr 8722 elpmi 8858 elmapex 8860 pmresg 8882 pmsspw 8889 ixpssmap2g 8939 ixpssmapg 8940 resixpfo 8948 php3 9221 php3OLD 9231 cantnfp1lem2 9691 cantnflem1 9701 cnfcom2lem 9713 rankxplim2 9892 rankxplim3 9893 cardlim 9984 alephnbtwn 10083 ttukeylem5 10525 r1wunlim 10749 ssnn0fi 14001 ruclem13 16258 ramtub 17030 elbasfv 17232 elbasov 17233 restsspw 17443 homarcl 18039 grpidval 18637 odlem2 19518 efgrelexlema 19728 subcmn 19816 dvdsrval 20319 elocv 21626 pf1rcl 22285 matrcl 22348 0top 22919 ppttop 22943 pptbas 22944 restrcl 23093 ssrest 23112 iscnp2 23175 lmmo 23316 zfbas 23832 rnelfmlem 23888 isfcls 23945 isnghm 24660 iscau2 25227 itg2cnlem1 25712 itgsubstlem 26005 dchrrcl 27201 clwwlknnn 29960 0ringsubrg 33192 ssdifidllem 33417 ssmxidllem 33434 eulerpartlemgvv 34354 indispconn 35202 cvmtop1 35228 cvmtop2 35229 mrsub0 35484 mrsubf 35485 mrsubccat 35486 mrsubcn 35487 mrsubco 35489 mrsubvrs 35490 msubf 35500 mclsrcl 35529 funpartlem 35906 tailfb 36341 nlpineqsn 37372 atbase 39253 llnbase 39474 lplnbase 39499 lvolbase 39543 osumcllem4N 39924 pexmidlem1N 39935 lhpbase 39963 mapco2g 42684 wepwsolem 43013 onov0suclim 43245 uneqsn 43996 relpmin 44925 ssfiunibd 45286 hoicvr 46525 0nelsetpreimafv 47352 termchomn0 49317 |
| Copyright terms: Public domain | W3C validator |