![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version |
Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | eleq2 2833 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-nul 4353 |
This theorem is referenced by: ne0i 4364 n0ii 4366 oprcl 4923 disjss3 5165 elfvdm 6957 mptrcl 7038 isomin 7373 ovrcl 7489 elfvov1 7490 elfvov2 7491 oalimcl 8616 omlimcl 8634 nnaordex2 8695 oaabs2 8705 ecexr 8768 elpmi 8904 elmapex 8906 pmresg 8928 pmsspw 8935 ixpssmap2g 8985 ixpssmapg 8986 resixpfo 8994 php3 9275 php3OLD 9287 cantnfp1lem2 9748 cantnflem1 9758 cnfcom2lem 9770 rankxplim2 9949 rankxplim3 9950 cardlim 10041 alephnbtwn 10140 ttukeylem5 10582 r1wunlim 10806 ssnn0fi 14036 ruclem13 16290 ramtub 17059 elbasfv 17264 elbasov 17265 restsspw 17491 homarcl 18095 grpidval 18699 odlem2 19581 efgrelexlema 19791 subcmn 19879 dvdsrval 20387 elocv 21709 pf1rcl 22374 matrcl 22437 0top 23011 ppttop 23035 pptbas 23036 restrcl 23186 ssrest 23205 iscnp2 23268 lmmo 23409 zfbas 23925 rnelfmlem 23981 isfcls 24038 isnghm 24765 iscau2 25330 itg2cnlem1 25816 itgsubstlem 26109 dchrrcl 27302 clwwlknnn 30065 0ringsubrg 33223 ssdifidllem 33449 ssmxidllem 33466 eulerpartlemgvv 34341 indispconn 35202 cvmtop1 35228 cvmtop2 35229 mrsub0 35484 mrsubf 35485 mrsubccat 35486 mrsubcn 35487 mrsubco 35489 mrsubvrs 35490 msubf 35500 mclsrcl 35529 funpartlem 35906 tailfb 36343 nlpineqsn 37374 atbase 39245 llnbase 39466 lplnbase 39491 lvolbase 39535 osumcllem4N 39916 pexmidlem1N 39927 lhpbase 39955 mapco2g 42670 wepwsolem 42999 onov0suclim 43236 uneqsn 43987 ssfiunibd 45224 hoicvr 46469 0nelsetpreimafv 47264 |
Copyright terms: Public domain | W3C validator |