Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version |
Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | eleq2 2827 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
3 | 1, 2 | mtbiri 326 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-dif 3886 df-nul 4254 |
This theorem is referenced by: ne0i 4265 n0ii 4267 oprcl 4827 disjss3 5069 elfvdm 6788 mptrcl 6866 isomin 7188 ovrcl 7296 oalimcl 8353 omlimcl 8371 oaabs2 8439 ecexr 8461 elpmi 8592 elmapex 8594 pmresg 8616 pmsspw 8623 ixpssmap2g 8673 ixpssmapg 8674 resixpfo 8682 php3 8899 cantnfp1lem2 9367 cantnflem1 9377 cnfcom2lem 9389 rankxplim2 9569 rankxplim3 9570 cardlim 9661 alephnbtwn 9758 ttukeylem5 10200 r1wunlim 10424 ssnn0fi 13633 ruclem13 15879 ramtub 16641 elbasfv 16846 elbasov 16847 restsspw 17059 homarcl 17659 grpidval 18260 odlem2 19062 efgrelexlema 19270 subcmn 19353 dvdsrval 19802 elocv 20785 pf1rcl 21425 matrcl 21469 0top 22041 ppttop 22065 pptbas 22066 restrcl 22216 ssrest 22235 iscnp2 22298 lmmo 22439 zfbas 22955 rnelfmlem 23011 isfcls 23068 isnghm 23793 iscau2 24346 itg2cnlem1 24831 itgsubstlem 25117 dchrrcl 26293 clwwlknnn 28298 ssmxidllem 31543 eulerpartlemgvv 32243 indispconn 33096 cvmtop1 33122 cvmtop2 33123 mrsub0 33378 mrsubf 33379 mrsubccat 33380 mrsubcn 33381 mrsubco 33383 mrsubvrs 33384 msubf 33394 mclsrcl 33423 funpartlem 34171 tailfb 34493 nlpineqsn 35506 atbase 37230 llnbase 37450 lplnbase 37475 lvolbase 37519 osumcllem4N 37900 pexmidlem1N 37911 lhpbase 37939 mapco2g 40452 wepwsolem 40783 uneqsn 41522 ssfiunibd 42738 hoicvr 43976 0nelsetpreimafv 44730 |
Copyright terms: Public domain | W3C validator |