| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2817 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| 4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: ne0i 4304 n0ii 4306 oprcl 4863 disjss3 5106 elfvdm 6895 mptrcl 6977 isomin 7312 ovrcl 7428 elfvov1 7429 elfvov2 7430 oalimcl 8524 omlimcl 8542 nnaordex2 8603 oaabs2 8613 ecexr 8676 elpmi 8819 elmapex 8821 pmresg 8843 pmsspw 8850 ixpssmap2g 8900 ixpssmapg 8901 resixpfo 8909 php3 9173 cantnfp1lem2 9632 cantnflem1 9642 cnfcom2lem 9654 rankxplim2 9833 rankxplim3 9834 cardlim 9925 alephnbtwn 10024 ttukeylem5 10466 r1wunlim 10690 ssnn0fi 13950 ruclem13 16210 ramtub 16983 elbasfv 17185 elbasov 17186 restsspw 17394 homarcl 17990 grpidval 18588 odlem2 19469 efgrelexlema 19679 subcmn 19767 dvdsrval 20270 elocv 21577 pf1rcl 22236 matrcl 22299 0top 22870 ppttop 22894 pptbas 22895 restrcl 23044 ssrest 23063 iscnp2 23126 lmmo 23267 zfbas 23783 rnelfmlem 23839 isfcls 23896 isnghm 24611 iscau2 25177 itg2cnlem1 25662 itgsubstlem 25955 dchrrcl 27151 clwwlknnn 29962 0ringsubrg 33202 ssdifidllem 33427 ssmxidllem 33444 eulerpartlemgvv 34367 indispconn 35221 cvmtop1 35247 cvmtop2 35248 mrsub0 35503 mrsubf 35504 mrsubccat 35505 mrsubcn 35506 mrsubco 35508 mrsubvrs 35509 msubf 35519 mclsrcl 35548 funpartlem 35930 tailfb 36365 nlpineqsn 37396 atbase 39282 llnbase 39503 lplnbase 39528 lvolbase 39572 osumcllem4N 39953 pexmidlem1N 39964 lhpbase 39992 mapco2g 42702 wepwsolem 43031 onov0suclim 43263 uneqsn 44014 relpmin 44942 ssfiunibd 45307 hoicvr 46546 0nelsetpreimafv 47391 termchomn0 49473 |
| Copyright terms: Public domain | W3C validator |