Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version |
Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4264 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | eleq2 2827 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-dif 3890 df-nul 4257 |
This theorem is referenced by: ne0i 4268 n0ii 4270 oprcl 4830 disjss3 5073 elfvdm 6806 mptrcl 6884 isomin 7208 ovrcl 7316 oalimcl 8391 omlimcl 8409 oaabs2 8479 ecexr 8503 elpmi 8634 elmapex 8636 pmresg 8658 pmsspw 8665 ixpssmap2g 8715 ixpssmapg 8716 resixpfo 8724 php3 8995 php3OLD 9007 cantnfp1lem2 9437 cantnflem1 9447 cnfcom2lem 9459 rankxplim2 9638 rankxplim3 9639 cardlim 9730 alephnbtwn 9827 ttukeylem5 10269 r1wunlim 10493 ssnn0fi 13705 ruclem13 15951 ramtub 16713 elbasfv 16918 elbasov 16919 restsspw 17142 homarcl 17743 grpidval 18345 odlem2 19147 efgrelexlema 19355 subcmn 19438 dvdsrval 19887 elocv 20873 pf1rcl 21515 matrcl 21559 0top 22133 ppttop 22157 pptbas 22158 restrcl 22308 ssrest 22327 iscnp2 22390 lmmo 22531 zfbas 23047 rnelfmlem 23103 isfcls 23160 isnghm 23887 iscau2 24441 itg2cnlem1 24926 itgsubstlem 25212 dchrrcl 26388 clwwlknnn 28397 ssmxidllem 31641 eulerpartlemgvv 32343 indispconn 33196 cvmtop1 33222 cvmtop2 33223 mrsub0 33478 mrsubf 33479 mrsubccat 33480 mrsubcn 33481 mrsubco 33483 mrsubvrs 33484 msubf 33494 mclsrcl 33523 funpartlem 34244 tailfb 34566 nlpineqsn 35579 atbase 37303 llnbase 37523 lplnbase 37548 lvolbase 37592 osumcllem4N 37973 pexmidlem1N 37984 lhpbase 38012 mapco2g 40536 wepwsolem 40867 uneqsn 41633 ssfiunibd 42848 hoicvr 44086 0nelsetpreimafv 44842 |
Copyright terms: Public domain | W3C validator |