| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4297 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2817 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| 4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: ne0i 4300 n0ii 4302 oprcl 4859 disjss3 5101 elfvdm 6877 mptrcl 6959 isomin 7294 ovrcl 7410 elfvov1 7411 elfvov2 7412 oalimcl 8501 omlimcl 8519 nnaordex2 8580 oaabs2 8590 ecexr 8653 elpmi 8796 elmapex 8798 pmresg 8820 pmsspw 8827 ixpssmap2g 8877 ixpssmapg 8878 resixpfo 8886 php3 9150 cantnfp1lem2 9608 cantnflem1 9618 cnfcom2lem 9630 rankxplim2 9809 rankxplim3 9810 cardlim 9901 alephnbtwn 10000 ttukeylem5 10442 r1wunlim 10666 ssnn0fi 13926 ruclem13 16186 ramtub 16959 elbasfv 17161 elbasov 17162 restsspw 17370 homarcl 17970 grpidval 18570 odlem2 19453 efgrelexlema 19663 subcmn 19751 dvdsrval 20281 elocv 21610 pf1rcl 22269 matrcl 22332 0top 22903 ppttop 22927 pptbas 22928 restrcl 23077 ssrest 23096 iscnp2 23159 lmmo 23300 zfbas 23816 rnelfmlem 23872 isfcls 23929 isnghm 24644 iscau2 25210 itg2cnlem1 25695 itgsubstlem 25988 dchrrcl 27184 clwwlknnn 30012 0ringsubrg 33218 ssdifidllem 33420 ssmxidllem 33437 eulerpartlemgvv 34360 indispconn 35214 cvmtop1 35240 cvmtop2 35241 mrsub0 35496 mrsubf 35497 mrsubccat 35498 mrsubcn 35499 mrsubco 35501 mrsubvrs 35502 msubf 35512 mclsrcl 35541 funpartlem 35923 tailfb 36358 nlpineqsn 37389 atbase 39275 llnbase 39496 lplnbase 39521 lvolbase 39565 osumcllem4N 39946 pexmidlem1N 39957 lhpbase 39985 mapco2g 42695 wepwsolem 43024 onov0suclim 43256 uneqsn 44007 relpmin 44935 ssfiunibd 45300 hoicvr 46539 0nelsetpreimafv 47384 termchomn0 49466 |
| Copyright terms: Public domain | W3C validator |