| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2818 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| 4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: ne0i 4307 n0ii 4309 oprcl 4866 disjss3 5109 elfvdm 6898 mptrcl 6980 isomin 7315 ovrcl 7431 elfvov1 7432 elfvov2 7433 oalimcl 8527 omlimcl 8545 nnaordex2 8606 oaabs2 8616 ecexr 8679 elpmi 8822 elmapex 8824 pmresg 8846 pmsspw 8853 ixpssmap2g 8903 ixpssmapg 8904 resixpfo 8912 php3 9179 cantnfp1lem2 9639 cantnflem1 9649 cnfcom2lem 9661 rankxplim2 9840 rankxplim3 9841 cardlim 9932 alephnbtwn 10031 ttukeylem5 10473 r1wunlim 10697 ssnn0fi 13957 ruclem13 16217 ramtub 16990 elbasfv 17192 elbasov 17193 restsspw 17401 homarcl 17997 grpidval 18595 odlem2 19476 efgrelexlema 19686 subcmn 19774 dvdsrval 20277 elocv 21584 pf1rcl 22243 matrcl 22306 0top 22877 ppttop 22901 pptbas 22902 restrcl 23051 ssrest 23070 iscnp2 23133 lmmo 23274 zfbas 23790 rnelfmlem 23846 isfcls 23903 isnghm 24618 iscau2 25184 itg2cnlem1 25669 itgsubstlem 25962 dchrrcl 27158 clwwlknnn 29969 0ringsubrg 33209 ssdifidllem 33434 ssmxidllem 33451 eulerpartlemgvv 34374 indispconn 35228 cvmtop1 35254 cvmtop2 35255 mrsub0 35510 mrsubf 35511 mrsubccat 35512 mrsubcn 35513 mrsubco 35515 mrsubvrs 35516 msubf 35526 mclsrcl 35555 funpartlem 35937 tailfb 36372 nlpineqsn 37403 atbase 39289 llnbase 39510 lplnbase 39535 lvolbase 39579 osumcllem4N 39960 pexmidlem1N 39971 lhpbase 39999 mapco2g 42709 wepwsolem 43038 onov0suclim 43270 uneqsn 44021 relpmin 44949 ssfiunibd 45314 hoicvr 46553 0nelsetpreimafv 47395 termchomn0 49477 |
| Copyright terms: Public domain | W3C validator |