![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version |
Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4329 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | eleq2 2822 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
3 | 1, 2 | mtbiri 326 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∅c0 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-dif 3950 df-nul 4322 |
This theorem is referenced by: ne0i 4333 n0ii 4335 oprcl 4898 disjss3 5146 elfvdm 6925 mptrcl 7004 isomin 7330 ovrcl 7446 oalimcl 8556 omlimcl 8574 oaabs2 8644 ecexr 8704 elpmi 8836 elmapex 8838 pmresg 8860 pmsspw 8867 ixpssmap2g 8917 ixpssmapg 8918 resixpfo 8926 php3 9208 php3OLD 9220 cantnfp1lem2 9670 cantnflem1 9680 cnfcom2lem 9692 rankxplim2 9871 rankxplim3 9872 cardlim 9963 alephnbtwn 10062 ttukeylem5 10504 r1wunlim 10728 ssnn0fi 13946 ruclem13 16181 ramtub 16941 elbasfv 17146 elbasov 17147 restsspw 17373 homarcl 17974 grpidval 18576 odlem2 19401 efgrelexlema 19611 subcmn 19699 dvdsrval 20167 elocv 21212 pf1rcl 21859 matrcl 21903 0top 22477 ppttop 22501 pptbas 22502 restrcl 22652 ssrest 22671 iscnp2 22734 lmmo 22875 zfbas 23391 rnelfmlem 23447 isfcls 23504 isnghm 24231 iscau2 24785 itg2cnlem1 25270 itgsubstlem 25556 dchrrcl 26732 clwwlknnn 29275 0ringsubrg 32366 ssmxidllem 32577 eulerpartlemgvv 33363 indispconn 34213 cvmtop1 34239 cvmtop2 34240 mrsub0 34495 mrsubf 34496 mrsubccat 34497 mrsubcn 34498 mrsubco 34500 mrsubvrs 34501 msubf 34511 mclsrcl 34540 funpartlem 34902 tailfb 35250 nlpineqsn 36277 atbase 38147 llnbase 38368 lplnbase 38393 lvolbase 38437 osumcllem4N 38818 pexmidlem1N 38829 lhpbase 38857 mapco2g 41437 wepwsolem 41769 onov0suclim 42009 uneqsn 42761 ssfiunibd 44005 hoicvr 45250 0nelsetpreimafv 46044 |
Copyright terms: Public domain | W3C validator |