| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4289 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2817 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| 4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3906 df-nul 4285 |
| This theorem is referenced by: ne0i 4292 n0ii 4294 oprcl 4850 disjss3 5091 elfvdm 6857 mptrcl 6939 isomin 7274 ovrcl 7390 elfvov1 7391 elfvov2 7392 oalimcl 8478 omlimcl 8496 nnaordex2 8557 oaabs2 8567 ecexr 8630 elpmi 8773 elmapex 8775 pmresg 8797 pmsspw 8804 ixpssmap2g 8854 ixpssmapg 8855 resixpfo 8863 php3 9123 cantnfp1lem2 9575 cantnflem1 9585 cnfcom2lem 9597 rankxplim2 9776 rankxplim3 9777 cardlim 9868 alephnbtwn 9965 ttukeylem5 10407 r1wunlim 10631 ssnn0fi 13892 ruclem13 16151 ramtub 16924 elbasfv 17126 elbasov 17127 restsspw 17335 homarcl 17935 grpidval 18535 odlem2 19418 efgrelexlema 19628 subcmn 19716 dvdsrval 20246 elocv 21575 pf1rcl 22234 matrcl 22297 0top 22868 ppttop 22892 pptbas 22893 restrcl 23042 ssrest 23061 iscnp2 23124 lmmo 23265 zfbas 23781 rnelfmlem 23837 isfcls 23894 isnghm 24609 iscau2 25175 itg2cnlem1 25660 itgsubstlem 25953 dchrrcl 27149 clwwlknnn 29977 0ringsubrg 33191 ssdifidllem 33393 ssmxidllem 33410 eulerpartlemgvv 34344 indispconn 35207 cvmtop1 35233 cvmtop2 35234 mrsub0 35489 mrsubf 35490 mrsubccat 35491 mrsubcn 35492 mrsubco 35494 mrsubvrs 35495 msubf 35505 mclsrcl 35534 funpartlem 35916 tailfb 36351 nlpineqsn 37382 atbase 39268 llnbase 39488 lplnbase 39513 lvolbase 39557 osumcllem4N 39938 pexmidlem1N 39949 lhpbase 39977 mapco2g 42687 wepwsolem 43015 onov0suclim 43247 uneqsn 43998 relpmin 44926 ssfiunibd 45291 hoicvr 46529 0nelsetpreimafv 47374 termchomn0 49469 |
| Copyright terms: Public domain | W3C validator |