| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4297 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | eleq2 2817 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
| 4 | 3 | con2i 139 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: ne0i 4300 n0ii 4302 oprcl 4859 disjss3 5101 elfvdm 6877 mptrcl 6959 isomin 7294 ovrcl 7410 elfvov1 7411 elfvov2 7412 oalimcl 8501 omlimcl 8519 nnaordex2 8580 oaabs2 8590 ecexr 8653 elpmi 8796 elmapex 8798 pmresg 8820 pmsspw 8827 ixpssmap2g 8877 ixpssmapg 8878 resixpfo 8886 php3 9150 cantnfp1lem2 9608 cantnflem1 9618 cnfcom2lem 9630 rankxplim2 9809 rankxplim3 9810 cardlim 9901 alephnbtwn 10000 ttukeylem5 10442 r1wunlim 10666 ssnn0fi 13926 ruclem13 16186 ramtub 16959 elbasfv 17161 elbasov 17162 restsspw 17370 homarcl 17966 grpidval 18564 odlem2 19445 efgrelexlema 19655 subcmn 19743 dvdsrval 20246 elocv 21553 pf1rcl 22212 matrcl 22275 0top 22846 ppttop 22870 pptbas 22871 restrcl 23020 ssrest 23039 iscnp2 23102 lmmo 23243 zfbas 23759 rnelfmlem 23815 isfcls 23872 isnghm 24587 iscau2 25153 itg2cnlem1 25638 itgsubstlem 25931 dchrrcl 27127 clwwlknnn 29935 0ringsubrg 33175 ssdifidllem 33400 ssmxidllem 33417 eulerpartlemgvv 34340 indispconn 35194 cvmtop1 35220 cvmtop2 35221 mrsub0 35476 mrsubf 35477 mrsubccat 35478 mrsubcn 35479 mrsubco 35481 mrsubvrs 35482 msubf 35492 mclsrcl 35521 funpartlem 35903 tailfb 36338 nlpineqsn 37369 atbase 39255 llnbase 39476 lplnbase 39501 lvolbase 39545 osumcllem4N 39926 pexmidlem1N 39937 lhpbase 39965 mapco2g 42675 wepwsolem 43004 onov0suclim 43236 uneqsn 43987 relpmin 44915 ssfiunibd 45280 hoicvr 46519 0nelsetpreimafv 47364 termchomn0 49446 |
| Copyright terms: Public domain | W3C validator |