![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem14 | Structured version Visualization version GIF version |
Description: Lemma for disjdmqseq 38761, partim2 38763 and petlem 38768 via disjlem17 38755, (general version of the former prtlem14 38830). (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
disjlem14 | ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV5 38673 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ Rel 𝑅)) | |
2 | 1 | simplbi 497 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
3 | rsp2 3283 | . . 3 ⊢ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))) |
5 | eceq1 8802 | . . . 4 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
6 | 5 | a1d 25 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
7 | elin 3992 | . . . 4 ⊢ (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) ↔ (𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅)) | |
8 | nel02 4362 | . . . . 5 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ¬ 𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅)) | |
9 | 8 | pm2.21d 121 | . . . 4 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
10 | 7, 9 | biimtrrid 243 | . . 3 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
11 | 6, 10 | jaoi 856 | . 2 ⊢ ((𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
12 | 4, 11 | syl6 35 | 1 ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∩ cin 3975 ∅c0 4352 dom cdm 5700 Rel wrel 5705 [cec 8761 Disj wdisjALTV 38169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-coss 38367 df-cnvrefrel 38483 df-disjALTV 38661 |
This theorem is referenced by: disjlem17 38755 |
Copyright terms: Public domain | W3C validator |