Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem14 Structured version   Visualization version   GIF version

Theorem disjlem14 38790
Description: Lemma for disjdmqseq 38797, partim2 38799 and petlem 38804 via disjlem17 38791, (general version of the former prtlem14 38867). (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
disjlem14 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem disjlem14
StepHypRef Expression
1 dfdisjALTV5 38709 . . . 4 ( Disj 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ Rel 𝑅))
21simplbi 497 . . 3 ( Disj 𝑅 → ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
3 rsp2 3254 . . 3 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)))
42, 3syl 17 . 2 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)))
5 eceq1 8710 . . . 4 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
65a1d 25 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
7 elin 3930 . . . 4 (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) ↔ (𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅))
8 nel02 4302 . . . . 5 (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ¬ 𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅))
98pm2.21d 121 . . . 4 (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
107, 9biimtrrid 243 . . 3 (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
116, 10jaoi 857 . 2 ((𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
124, 11syl6 35 1 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cin 3913  c0 4296  dom cdm 5638  Rel wrel 5643  [cec 8669   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-coss 38402  df-cnvrefrel 38518  df-disjALTV 38697
This theorem is referenced by:  disjlem17  38791
  Copyright terms: Public domain W3C validator