![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem14 | Structured version Visualization version GIF version |
Description: Lemma for disjdmqseq 37663, partim2 37665 and petlem 37670 via disjlem17 37657, (general version of the former prtlem14 37732). (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
disjlem14 | ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV5 37575 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ Rel 𝑅)) | |
2 | 1 | simplbi 498 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
3 | rsp2 3274 | . . 3 ⊢ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))) |
5 | eceq1 8737 | . . . 4 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
6 | 5 | a1d 25 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
7 | elin 3963 | . . . 4 ⊢ (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) ↔ (𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅)) | |
8 | nel02 4331 | . . . . 5 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ¬ 𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅)) | |
9 | 8 | pm2.21d 121 | . . . 4 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
10 | 7, 9 | biimtrrid 242 | . . 3 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
11 | 6, 10 | jaoi 855 | . 2 ⊢ ((𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
12 | 4, 11 | syl6 35 | 1 ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3946 ∅c0 4321 dom cdm 5675 Rel wrel 5680 [cec 8697 Disj wdisjALTV 37065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8701 df-coss 37269 df-cnvrefrel 37385 df-disjALTV 37563 |
This theorem is referenced by: disjlem17 37657 |
Copyright terms: Public domain | W3C validator |