![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem14 | Structured version Visualization version GIF version |
Description: Lemma for disjdmqseq 38277, partim2 38279 and petlem 38284 via disjlem17 38271, (general version of the former prtlem14 38346). (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
disjlem14 | ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV5 38189 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ Rel 𝑅)) | |
2 | 1 | simplbi 497 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
3 | rsp2 3271 | . . 3 ⊢ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))) |
5 | eceq1 8763 | . . . 4 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
6 | 5 | a1d 25 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
7 | elin 3963 | . . . 4 ⊢ (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) ↔ (𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅)) | |
8 | nel02 4333 | . . . . 5 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ¬ 𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅)) | |
9 | 8 | pm2.21d 121 | . . . 4 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
10 | 7, 9 | biimtrrid 242 | . . 3 ⊢ (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
11 | 6, 10 | jaoi 856 | . 2 ⊢ ((𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)) |
12 | 4, 11 | syl6 35 | 1 ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∩ cin 3946 ∅c0 4323 dom cdm 5678 Rel wrel 5683 [cec 8723 Disj wdisjALTV 37682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rmo 3373 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8727 df-coss 37883 df-cnvrefrel 37999 df-disjALTV 38177 |
This theorem is referenced by: disjlem17 38271 |
Copyright terms: Public domain | W3C validator |