Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem14 Structured version   Visualization version   GIF version

Theorem disjlem14 37018
Description: Lemma for disjdmqseq 37025, partim2 37027 and petlem 37032 via disjlem17 37019, (general version of the former prtlem14 37094). (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
disjlem14 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem disjlem14
StepHypRef Expression
1 dfdisjALTV5 36937 . . . 4 ( Disj 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ Rel 𝑅))
21simplbi 499 . . 3 ( Disj 𝑅 → ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
3 rsp2 3256 . . 3 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)))
42, 3syl 17 . 2 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)))
5 eceq1 8567 . . . 4 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
65a1d 25 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
7 elin 3908 . . . 4 (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) ↔ (𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅))
8 nel02 4272 . . . . 5 (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ¬ 𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅))
98pm2.21d 121 . . . 4 (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → (𝐴 ∈ ([𝑥]𝑅 ∩ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
107, 9syl5bir 243 . . 3 (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
116, 10jaoi 855 . 2 ((𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))
124, 11syl6 35 1 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845   = wceq 1539  wcel 2104  wral 3061  cin 3891  c0 4262  dom cdm 5600  Rel wrel 5605  [cec 8527   Disj wdisjALTV 36421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rmo 3339  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-coss 36631  df-cnvrefrel 36747  df-disjALTV 36925
This theorem is referenced by:  disjlem17  37019
  Copyright terms: Public domain W3C validator