| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neldifpr2 | Structured version Visualization version GIF version | ||
| Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| neldifpr2 | ⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2937 | . 2 ⊢ ¬ 𝐵 ≠ 𝐵 | |
| 2 | eldifpr 4611 | . . 3 ⊢ (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) ↔ (𝐵 ∈ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐵)) | |
| 3 | 2 | simp3bi 1147 | . 2 ⊢ (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) → 𝐵 ≠ 𝐵) |
| 4 | 1, 3 | mto 197 | 1 ⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |