Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neldifpr2 | Structured version Visualization version GIF version |
Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
neldifpr2 | ⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2951 | . 2 ⊢ ¬ 𝐵 ≠ 𝐵 | |
2 | eldifpr 4590 | . . 3 ⊢ (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) ↔ (𝐵 ∈ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐵)) | |
3 | 2 | simp3bi 1145 | . 2 ⊢ (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) → 𝐵 ≠ 𝐵) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |