Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neldifpr2 Structured version   Visualization version   GIF version

Theorem neldifpr2 32463
Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
neldifpr2 ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵})

Proof of Theorem neldifpr2
StepHypRef Expression
1 neirr 2934 . 2 ¬ 𝐵𝐵
2 eldifpr 4622 . . 3 (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) ↔ (𝐵𝐶𝐵𝐴𝐵𝐵))
32simp3bi 1147 . 2 (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) → 𝐵𝐵)
41, 3mto 197 1 ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  wne 2925  cdif 3911  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-sn 4590  df-pr 4592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator