Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neldifpr2 Structured version   Visualization version   GIF version

Theorem neldifpr2 30783
Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
neldifpr2 ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵})

Proof of Theorem neldifpr2
StepHypRef Expression
1 neirr 2951 . 2 ¬ 𝐵𝐵
2 eldifpr 4590 . . 3 (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) ↔ (𝐵𝐶𝐵𝐴𝐵𝐵))
32simp3bi 1145 . 2 (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) → 𝐵𝐵)
41, 3mto 196 1 ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  wne 2942  cdif 3880  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator