![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neldifpr2 | Structured version Visualization version GIF version |
Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
neldifpr2 | ⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2949 | . 2 ⊢ ¬ 𝐵 ≠ 𝐵 | |
2 | eldifpr 4659 | . . 3 ⊢ (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) ↔ (𝐵 ∈ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐵)) | |
3 | 2 | simp3bi 1147 | . 2 ⊢ (𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) → 𝐵 ≠ 𝐵) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ≠ wne 2940 ∖ cdif 3944 {cpr 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3950 df-un 3952 df-sn 4628 df-pr 4630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |