Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidifsnel Structured version   Visualization version   GIF version

Theorem unidifsnel 30784
Description: The other element of a pair is an element of the pair. (Contributed by Thierry Arnoux, 26-Aug-2017.)
Assertion
Ref Expression
unidifsnel ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ 𝑃)

Proof of Theorem unidifsnel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2onn 8433 . . . . . . . . . 10 2o ∈ ω
2 nnfi 8912 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . . . . . 9 2o ∈ Fin
4 enfi 8933 . . . . . . . . 9 (𝑃 ≈ 2o → (𝑃 ∈ Fin ↔ 2o ∈ Fin))
53, 4mpbiri 257 . . . . . . . 8 (𝑃 ≈ 2o𝑃 ∈ Fin)
65adantl 481 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ∈ Fin)
7 diffi 8979 . . . . . . 7 (𝑃 ∈ Fin → (𝑃 ∖ {𝑋}) ∈ Fin)
86, 7syl 17 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ Fin)
98cardidd 10236 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (card‘(𝑃 ∖ {𝑋})) ≈ (𝑃 ∖ {𝑋}))
109ensymd 8746 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ (card‘(𝑃 ∖ {𝑋})))
11 simpl 482 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
12 dif1card 9697 . . . . . . 7 ((𝑃 ∈ Fin ∧ 𝑋𝑃) → (card‘𝑃) = suc (card‘(𝑃 ∖ {𝑋})))
136, 11, 12syl2anc 583 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (card‘𝑃) = suc (card‘(𝑃 ∖ {𝑋})))
14 cardennn 9672 . . . . . . . . 9 ((𝑃 ≈ 2o ∧ 2o ∈ ω) → (card‘𝑃) = 2o)
151, 14mpan2 687 . . . . . . . 8 (𝑃 ≈ 2o → (card‘𝑃) = 2o)
16 df-2o 8268 . . . . . . . 8 2o = suc 1o
1715, 16eqtrdi 2795 . . . . . . 7 (𝑃 ≈ 2o → (card‘𝑃) = suc 1o)
1817adantl 481 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (card‘𝑃) = suc 1o)
1913, 18eqtr3d 2780 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → suc (card‘(𝑃 ∖ {𝑋})) = suc 1o)
20 suc11reg 9307 . . . . 5 (suc (card‘(𝑃 ∖ {𝑋})) = suc 1o ↔ (card‘(𝑃 ∖ {𝑋})) = 1o)
2119, 20sylib 217 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (card‘(𝑃 ∖ {𝑋})) = 1o)
2210, 21breqtrd 5096 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
23 en1 8765 . . 3 ((𝑃 ∖ {𝑋}) ≈ 1o ↔ ∃𝑥(𝑃 ∖ {𝑋}) = {𝑥})
2422, 23sylib 217 . 2 ((𝑋𝑃𝑃 ≈ 2o) → ∃𝑥(𝑃 ∖ {𝑋}) = {𝑥})
25 simpr 484 . . . . 5 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = {𝑥})
2625unieqd 4850 . . . 4 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = {𝑥})
27 vex 3426 . . . . 5 𝑥 ∈ V
2827unisn 4858 . . . 4 {𝑥} = 𝑥
2926, 28eqtrdi 2795 . . 3 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = 𝑥)
30 difssd 4063 . . . . 5 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) ⊆ 𝑃)
3125, 30eqsstrrd 3956 . . . 4 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → {𝑥} ⊆ 𝑃)
32 vsnid 4595 . . . 4 𝑥 ∈ {𝑥}
33 ssel2 3912 . . . 4 (({𝑥} ⊆ 𝑃𝑥 ∈ {𝑥}) → 𝑥𝑃)
3431, 32, 33sylancl 585 . . 3 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → 𝑥𝑃)
3529, 34eqeltrd 2839 . 2 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) ∈ 𝑃)
3624, 35exlimddv 1939 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  cdif 3880  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  suc csuc 6253  cfv 6418  ωcom 7687  1oc1o 8260  2oc2o 8261  cen 8688  Fincfn 8691  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-ac 9803
This theorem is referenced by:  cyc3genpmlem  31320
  Copyright terms: Public domain W3C validator