MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifpr Structured version   Visualization version   GIF version

Theorem eldifpr 4680
Description: Membership in a set with two elements removed. Similar to eldifsn 4811 and eldiftp 4710. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 4670 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷)))
21notbid 318 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷)))
3 neanior 3041 . . . 4 ((𝐴𝐶𝐴𝐷) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷))
42, 3bitr4di 289 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴𝐶𝐴𝐷)))
54pm5.32i 574 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
6 eldif 3986 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}))
7 3anass 1095 . 2 ((𝐴𝐵𝐴𝐶𝐴𝐷) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
85, 6, 73bitr4i 303 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  rexdifpr  4681  logbcl  26828  logbid1  26829  logb1  26830  elogb  26831  logbchbase  26832  relogbval  26833  relogbcl  26834  relogbreexp  26836  relogbmul  26838  relogbexp  26841  nnlogbexp  26842  relogbcxp  26846  cxplogb  26847  relogbcxpb  26848  logbmpt  26849  logbfval  26851  logbgt0b  26854  2logb9irrALT  26859  sqrt2cxp2logb9e3  26860  neldifpr1  32561  neldifpr2  32562  eluz2cnn0n1  48240  rege1logbrege0  48292  relogbmulbexp  48295  relogbdivb  48296  nnpw2blen  48314
  Copyright terms: Public domain W3C validator