Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldifpr | Structured version Visualization version GIF version |
Description: Membership in a set with two elements removed. Similar to eldifsn 4725 and eldiftp 4627. (Contributed by Mario Carneiro, 18-Jul-2017.) |
Ref | Expression |
---|---|
eldifpr | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4587 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
2 | 1 | notbid 317 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
3 | neanior 3038 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | |
4 | 2, 3 | bitr4di 288 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
5 | 4 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
6 | eldif 3901 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷})) | |
7 | 3anass 1093 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∖ cdif 3888 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-un 3896 df-sn 4567 df-pr 4569 |
This theorem is referenced by: rexdifpr 4599 logbcl 25898 logbid1 25899 logb1 25900 elogb 25901 logbchbase 25902 relogbval 25903 relogbcl 25904 relogbreexp 25906 relogbmul 25908 relogbexp 25911 nnlogbexp 25912 relogbcxp 25916 cxplogb 25917 relogbcxpb 25918 logbmpt 25919 logbfval 25921 logbgt0b 25924 2logb9irrALT 25929 sqrt2cxp2logb9e3 25930 neldifpr1 30860 neldifpr2 30861 eluz2cnn0n1 45804 rege1logbrege0 45856 relogbmulbexp 45859 relogbdivb 45860 nnpw2blen 45878 |
Copyright terms: Public domain | W3C validator |