| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifpr | Structured version Visualization version GIF version | ||
| Description: Membership in a set with two elements removed. Similar to eldifsn 4737 and eldiftp 4639. (Contributed by Mario Carneiro, 18-Jul-2017.) |
| Ref | Expression |
|---|---|
| eldifpr | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 4600 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| 3 | neanior 3018 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | |
| 4 | 2, 3 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 5 | 4 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 6 | eldif 3913 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷})) | |
| 7 | 3anass 1094 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-un 3908 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: rexdifpr 4611 logbcl 26675 logbid1 26676 logb1 26677 elogb 26678 logbchbase 26679 relogbval 26680 relogbcl 26681 relogbreexp 26683 relogbmul 26685 relogbexp 26688 nnlogbexp 26689 relogbcxp 26693 cxplogb 26694 relogbcxpb 26695 logbmpt 26696 logbfval 26698 logbgt0b 26701 2logb9irrALT 26706 sqrt2cxp2logb9e3 26707 neldifpr1 32477 neldifpr2 32478 eluz2cnn0n1 48506 rege1logbrege0 48553 relogbmulbexp 48556 relogbdivb 48557 nnpw2blen 48575 |
| Copyright terms: Public domain | W3C validator |