MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifpr Structured version   Visualization version   GIF version

Theorem eldifpr 4557
Description: Membership in a set with two elements removed. Similar to eldifsn 4680 and eldiftp 4584. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 4546 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷)))
21notbid 321 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷)))
3 neanior 3079 . . . 4 ((𝐴𝐶𝐴𝐷) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷))
42, 3syl6bbr 292 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴𝐶𝐴𝐷)))
54pm5.32i 578 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
6 eldif 3891 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}))
7 3anass 1092 . 2 ((𝐴𝐵𝐴𝐶𝐴𝐷) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
85, 6, 73bitr4i 306 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cdif 3878  {cpr 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-v 3443  df-dif 3884  df-un 3886  df-sn 4526  df-pr 4528
This theorem is referenced by:  rexdifpr  4558  logbcl  25353  logbid1  25354  logb1  25355  elogb  25356  logbchbase  25357  relogbval  25358  relogbcl  25359  relogbreexp  25361  relogbmul  25363  relogbexp  25366  nnlogbexp  25367  relogbcxp  25371  cxplogb  25372  relogbcxpb  25373  logbmpt  25374  logbfval  25376  logbgt0b  25379  2logb9irrALT  25384  sqrt2cxp2logb9e3  25385  neldifpr1  30305  neldifpr2  30306  eluz2cnn0n1  44920  rege1logbrege0  44972  relogbmulbexp  44975  relogbdivb  44976  nnpw2blen  44994
  Copyright terms: Public domain W3C validator