Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifpr Structured version   Visualization version   GIF version

Theorem eldifpr 4426
 Description: Membership in a set with two elements removed. Similar to eldifsn 4537 and eldiftp 4448. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 4419 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷)))
21notbid 310 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷)))
3 neanior 3092 . . . 4 ((𝐴𝐶𝐴𝐷) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷))
42, 3syl6bbr 281 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴𝐶𝐴𝐷)))
54pm5.32i 572 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
6 eldif 3809 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}))
7 3anass 1122 . 2 ((𝐴𝐵𝐴𝐶𝐴𝐷) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
85, 6, 73bitr4i 295 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 198   ∧ wa 386   ∨ wo 880   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166   ≠ wne 3000   ∖ cdif 3796  {cpr 4400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-ext 2804 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-v 3417  df-dif 3802  df-un 3804  df-sn 4399  df-pr 4401 This theorem is referenced by:  rexdifpr  4427  logbcl  24908  logbid1  24909  logb1  24910  elogb  24911  logbchbase  24912  relogbval  24913  relogbcl  24914  relogbreexp  24916  relogbmul  24918  relogbexp  24921  nnlogbexp  24922  relogbcxp  24926  cxplogb  24927  relogbcxpb  24928  logbmpt  24929  logbfval  24931  logbgt0b  24934  2logb9irrALT  24939  sqrt2cxp2logb9e3  24940  eluz2cnn0n1  43149  rege1logbrege0  43200  relogbmulbexp  43203  relogbdivb  43204  nnpw2blen  43222
 Copyright terms: Public domain W3C validator