MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifpr Structured version   Visualization version   GIF version

Theorem eldifpr 4593
Description: Membership in a set with two elements removed. Similar to eldifsn 4720 and eldiftp 4622. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 4582 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷)))
21notbid 318 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷)))
3 neanior 3037 . . . 4 ((𝐴𝐶𝐴𝐷) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷))
42, 3bitr4di 289 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴𝐶𝐴𝐷)))
54pm5.32i 575 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
6 eldif 3897 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}))
7 3anass 1094 . 2 ((𝐴𝐵𝐴𝐶𝐴𝐷) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
85, 6, 73bitr4i 303 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cdif 3884  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-un 3892  df-sn 4562  df-pr 4564
This theorem is referenced by:  rexdifpr  4594  logbcl  25917  logbid1  25918  logb1  25919  elogb  25920  logbchbase  25921  relogbval  25922  relogbcl  25923  relogbreexp  25925  relogbmul  25927  relogbexp  25930  nnlogbexp  25931  relogbcxp  25935  cxplogb  25936  relogbcxpb  25937  logbmpt  25938  logbfval  25940  logbgt0b  25943  2logb9irrALT  25948  sqrt2cxp2logb9e3  25949  neldifpr1  30881  neldifpr2  30882  eluz2cnn0n1  45852  rege1logbrege0  45904  relogbmulbexp  45907  relogbdivb  45908  nnpw2blen  45926
  Copyright terms: Public domain W3C validator