![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldifpr | Structured version Visualization version GIF version |
Description: Membership in a set with two elements removed. Similar to eldifsn 4791 and eldiftp 4691. (Contributed by Mario Carneiro, 18-Jul-2017.) |
Ref | Expression |
---|---|
eldifpr | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4650 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
3 | neanior 3036 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | |
4 | 2, 3 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
5 | 4 | pm5.32i 576 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
6 | eldif 3959 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷})) | |
7 | 3anass 1096 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3946 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-un 3954 df-sn 4630 df-pr 4632 |
This theorem is referenced by: rexdifpr 4662 logbcl 26272 logbid1 26273 logb1 26274 elogb 26275 logbchbase 26276 relogbval 26277 relogbcl 26278 relogbreexp 26280 relogbmul 26282 relogbexp 26285 nnlogbexp 26286 relogbcxp 26290 cxplogb 26291 relogbcxpb 26292 logbmpt 26293 logbfval 26295 logbgt0b 26298 2logb9irrALT 26303 sqrt2cxp2logb9e3 26304 neldifpr1 31770 neldifpr2 31771 eluz2cnn0n1 47192 rege1logbrege0 47244 relogbmulbexp 47247 relogbdivb 47248 nnpw2blen 47266 |
Copyright terms: Public domain | W3C validator |