MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifpr Structured version   Visualization version   GIF version

Theorem eldifpr 4610
Description: Membership in a set with two elements removed. Similar to eldifsn 4737 and eldiftp 4639. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 4600 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷)))
21notbid 318 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷)))
3 neanior 3018 . . . 4 ((𝐴𝐶𝐴𝐷) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷))
42, 3bitr4di 289 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴𝐶𝐴𝐷)))
54pm5.32i 574 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
6 eldif 3913 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}))
7 3anass 1094 . 2 ((𝐴𝐵𝐴𝐶𝐴𝐷) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷)))
85, 6, 73bitr4i 303 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3900  {cpr 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3438  df-dif 3906  df-un 3908  df-sn 4578  df-pr 4580
This theorem is referenced by:  rexdifpr  4611  logbcl  26675  logbid1  26676  logb1  26677  elogb  26678  logbchbase  26679  relogbval  26680  relogbcl  26681  relogbreexp  26683  relogbmul  26685  relogbexp  26688  nnlogbexp  26689  relogbcxp  26693  cxplogb  26694  relogbcxpb  26695  logbmpt  26696  logbfval  26698  logbgt0b  26701  2logb9irrALT  26706  sqrt2cxp2logb9e3  26707  neldifpr1  32477  neldifpr2  32478  eluz2cnn0n1  48506  rege1logbrege0  48553  relogbmulbexp  48556  relogbdivb  48557  nnpw2blen  48575
  Copyright terms: Public domain W3C validator