MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff3 Structured version   Visualization version   GIF version

Theorem dff3 6603
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff3 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6284 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 ffun 6268 . . . . . . . 8 (𝐹:𝐴𝐵 → Fun 𝐹)
3 fdm 6273 . . . . . . . . . 10 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43eleq2d 2882 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
54biimpar 465 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
6 funfvop 6560 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
72, 5, 6syl2an2r 667 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
8 df-br 4856 . . . . . . 7 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
97, 8sylibr 225 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
10 fvex 6430 . . . . . . 7 (𝐹𝑥) ∈ V
11 breq2 4859 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑥𝐹𝑦𝑥𝐹(𝐹𝑥)))
1210, 11spcev 3504 . . . . . 6 (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦)
139, 12syl 17 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑥𝐹𝑦)
14 funmo 6126 . . . . . . 7 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
152, 14syl 17 . . . . . 6 (𝐹:𝐴𝐵 → ∃*𝑦 𝑥𝐹𝑦)
1615adantr 468 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃*𝑦 𝑥𝐹𝑦)
17 df-eu 2642 . . . . 5 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
1813, 16, 17sylanbrc 574 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃!𝑦 𝑥𝐹𝑦)
1918ralrimiva 3165 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
201, 19jca 503 . 2 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
21 xpss 5340 . . . . . . . 8 (𝐴 × 𝐵) ⊆ (V × V)
22 sstr 3817 . . . . . . . 8 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (V × V)) → 𝐹 ⊆ (V × V))
2321, 22mpan2 674 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → 𝐹 ⊆ (V × V))
24 df-rel 5331 . . . . . . 7 (Rel 𝐹𝐹 ⊆ (V × V))
2523, 24sylibr 225 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → Rel 𝐹)
2625adantr 468 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Rel 𝐹)
27 df-ral 3112 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦))
28 eumo 2672 . . . . . . . . . . . 12 (∃!𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
2928imim2i 16 . . . . . . . . . . 11 ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
3029adantl 469 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
31 df-br 4856 . . . . . . . . . . . . . . . 16 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
32 ssel 3803 . . . . . . . . . . . . . . . 16 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
3331, 32syl5bi 233 . . . . . . . . . . . . . . 15 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
34 opelxp1 5363 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
3533, 34syl6 35 . . . . . . . . . . . . . 14 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦𝑥𝐴))
3635exlimdv 2024 . . . . . . . . . . . . 13 (𝐹 ⊆ (𝐴 × 𝐵) → (∃𝑦 𝑥𝐹𝑦𝑥𝐴))
3736con3d 149 . . . . . . . . . . . 12 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ¬ ∃𝑦 𝑥𝐹𝑦))
38 exmo 2668 . . . . . . . . . . . . 13 (∃𝑦 𝑥𝐹𝑦 ∨ ∃*𝑦 𝑥𝐹𝑦)
3938ori 879 . . . . . . . . . . . 12 (¬ ∃𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
4037, 39syl6 35 . . . . . . . . . . 11 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4140adantr 468 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4230, 41pm2.61d 171 . . . . . . . . 9 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → ∃*𝑦 𝑥𝐹𝑦)
4342ex 399 . . . . . . . 8 (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∃*𝑦 𝑥𝐹𝑦))
4443alimdv 2007 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4527, 44syl5bi 233 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4645imp 395 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
47 dffun6 6125 . . . . 5 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4826, 46, 47sylanbrc 574 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Fun 𝐹)
49 dmss 5537 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵))
50 dmxpss 5789 . . . . . . 7 dom (𝐴 × 𝐵) ⊆ 𝐴
5149, 50syl6ss 3821 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹𝐴)
52 breq1 4858 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐹𝑦𝑧𝐹𝑦))
5352eubidv 2647 . . . . . . . . 9 (𝑥 = 𝑧 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑧𝐹𝑦))
5453rspccv 3510 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴 → ∃!𝑦 𝑧𝐹𝑦))
55 euex 2667 . . . . . . . . 9 (∃!𝑦 𝑧𝐹𝑦 → ∃𝑦 𝑧𝐹𝑦)
56 vex 3405 . . . . . . . . . 10 𝑧 ∈ V
5756eldm 5535 . . . . . . . . 9 (𝑧 ∈ dom 𝐹 ↔ ∃𝑦 𝑧𝐹𝑦)
5855, 57sylibr 225 . . . . . . . 8 (∃!𝑦 𝑧𝐹𝑦𝑧 ∈ dom 𝐹)
5954, 58syl6 35 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴𝑧 ∈ dom 𝐹))
6059ssrdv 3815 . . . . . 6 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦𝐴 ⊆ dom 𝐹)
6151, 60anim12i 602 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
62 eqss 3824 . . . . 5 (dom 𝐹 = 𝐴 ↔ (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
6361, 62sylibr 225 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → dom 𝐹 = 𝐴)
64 df-fn 6113 . . . 4 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
6548, 63, 64sylanbrc 574 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹 Fn 𝐴)
66 rnss 5568 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
67 rnxpss 5790 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
6866, 67syl6ss 3821 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
6968adantr 468 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ran 𝐹𝐵)
70 df-f 6114 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
7165, 69, 70sylanbrc 574 . 2 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹:𝐴𝐵)
7220, 71impbii 200 1 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wex 1859  wcel 2157  ∃*wmo 2633  ∃!weu 2641  wral 3107  Vcvv 3402  wss 3780  cop 4387   class class class wbr 4855   × cxp 5322  dom cdm 5324  ran crn 5325  Rel wrel 5329  Fun wfun 6104   Fn wfn 6105  wf 6106  cfv 6110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pr 5109
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3404  df-sbc 3645  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-br 4856  df-opab 4918  df-id 5232  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-fv 6118
This theorem is referenced by:  dff4  6604  seqomlem2  7791
  Copyright terms: Public domain W3C validator