MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff3 Structured version   Visualization version   GIF version

Theorem dff3 6976
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff3 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6628 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 ffun 6603 . . . . . . . 8 (𝐹:𝐴𝐵 → Fun 𝐹)
3 fdm 6609 . . . . . . . . . 10 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43eleq2d 2824 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
54biimpar 478 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
6 funfvop 6927 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
72, 5, 6syl2an2r 682 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
8 df-br 5075 . . . . . . 7 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
97, 8sylibr 233 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
10 fvex 6787 . . . . . . 7 (𝐹𝑥) ∈ V
11 breq2 5078 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑥𝐹𝑦𝑥𝐹(𝐹𝑥)))
1210, 11spcev 3545 . . . . . 6 (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦)
139, 12syl 17 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑥𝐹𝑦)
14 funmo 6450 . . . . . . 7 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
152, 14syl 17 . . . . . 6 (𝐹:𝐴𝐵 → ∃*𝑦 𝑥𝐹𝑦)
1615adantr 481 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃*𝑦 𝑥𝐹𝑦)
17 df-eu 2569 . . . . 5 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
1813, 16, 17sylanbrc 583 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃!𝑦 𝑥𝐹𝑦)
1918ralrimiva 3103 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
201, 19jca 512 . 2 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
21 xpss 5605 . . . . . . . 8 (𝐴 × 𝐵) ⊆ (V × V)
22 sstr 3929 . . . . . . . 8 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (V × V)) → 𝐹 ⊆ (V × V))
2321, 22mpan2 688 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → 𝐹 ⊆ (V × V))
24 df-rel 5596 . . . . . . 7 (Rel 𝐹𝐹 ⊆ (V × V))
2523, 24sylibr 233 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → Rel 𝐹)
2625adantr 481 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Rel 𝐹)
27 df-ral 3069 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦))
28 eumo 2578 . . . . . . . . . . . 12 (∃!𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
2928imim2i 16 . . . . . . . . . . 11 ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
3029adantl 482 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
31 df-br 5075 . . . . . . . . . . . . . . . 16 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
32 ssel 3914 . . . . . . . . . . . . . . . 16 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
3331, 32syl5bi 241 . . . . . . . . . . . . . . 15 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
34 opelxp1 5630 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
3533, 34syl6 35 . . . . . . . . . . . . . 14 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦𝑥𝐴))
3635exlimdv 1936 . . . . . . . . . . . . 13 (𝐹 ⊆ (𝐴 × 𝐵) → (∃𝑦 𝑥𝐹𝑦𝑥𝐴))
3736con3d 152 . . . . . . . . . . . 12 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ¬ ∃𝑦 𝑥𝐹𝑦))
38 nexmo 2541 . . . . . . . . . . . 12 (¬ ∃𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
3937, 38syl6 35 . . . . . . . . . . 11 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4039adantr 481 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4130, 40pm2.61d 179 . . . . . . . . 9 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → ∃*𝑦 𝑥𝐹𝑦)
4241ex 413 . . . . . . . 8 (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∃*𝑦 𝑥𝐹𝑦))
4342alimdv 1919 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4427, 43syl5bi 241 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4544imp 407 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
46 dffun6 6449 . . . . 5 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4726, 45, 46sylanbrc 583 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Fun 𝐹)
48 dmss 5811 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵))
49 dmxpss 6074 . . . . . . 7 dom (𝐴 × 𝐵) ⊆ 𝐴
5048, 49sstrdi 3933 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹𝐴)
51 breq1 5077 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐹𝑦𝑧𝐹𝑦))
5251eubidv 2586 . . . . . . . . 9 (𝑥 = 𝑧 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑧𝐹𝑦))
5352rspccv 3558 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴 → ∃!𝑦 𝑧𝐹𝑦))
54 euex 2577 . . . . . . . . 9 (∃!𝑦 𝑧𝐹𝑦 → ∃𝑦 𝑧𝐹𝑦)
55 vex 3436 . . . . . . . . . 10 𝑧 ∈ V
5655eldm 5809 . . . . . . . . 9 (𝑧 ∈ dom 𝐹 ↔ ∃𝑦 𝑧𝐹𝑦)
5754, 56sylibr 233 . . . . . . . 8 (∃!𝑦 𝑧𝐹𝑦𝑧 ∈ dom 𝐹)
5853, 57syl6 35 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴𝑧 ∈ dom 𝐹))
5958ssrdv 3927 . . . . . 6 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦𝐴 ⊆ dom 𝐹)
6050, 59anim12i 613 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
61 eqss 3936 . . . . 5 (dom 𝐹 = 𝐴 ↔ (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
6260, 61sylibr 233 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → dom 𝐹 = 𝐴)
63 df-fn 6436 . . . 4 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
6447, 62, 63sylanbrc 583 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹 Fn 𝐴)
65 rnss 5848 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
66 rnxpss 6075 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
6765, 66sstrdi 3933 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
6867adantr 481 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ran 𝐹𝐵)
69 df-f 6437 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
7064, 68, 69sylanbrc 583 . 2 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹:𝐴𝐵)
7120, 70impbii 208 1 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃*wmo 2538  ∃!weu 2568  wral 3064  Vcvv 3432  wss 3887  cop 4567   class class class wbr 5074   × cxp 5587  dom cdm 5589  ran crn 5590  Rel wrel 5594  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  dff4  6977  seqomlem2  8282
  Copyright terms: Public domain W3C validator