MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff3 Structured version   Visualization version   GIF version

Theorem dff3 7120
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff3 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6763 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 ffun 6739 . . . . . . . 8 (𝐹:𝐴𝐵 → Fun 𝐹)
3 fdm 6745 . . . . . . . . . 10 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43eleq2d 2827 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
54biimpar 477 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
6 funfvop 7070 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
72, 5, 6syl2an2r 685 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
8 df-br 5144 . . . . . . 7 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
97, 8sylibr 234 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
10 fvex 6919 . . . . . . 7 (𝐹𝑥) ∈ V
11 breq2 5147 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑥𝐹𝑦𝑥𝐹(𝐹𝑥)))
1210, 11spcev 3606 . . . . . 6 (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦)
139, 12syl 17 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑥𝐹𝑦)
14 funmo 6581 . . . . . . 7 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
152, 14syl 17 . . . . . 6 (𝐹:𝐴𝐵 → ∃*𝑦 𝑥𝐹𝑦)
1615adantr 480 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃*𝑦 𝑥𝐹𝑦)
17 df-eu 2569 . . . . 5 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
1813, 16, 17sylanbrc 583 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃!𝑦 𝑥𝐹𝑦)
1918ralrimiva 3146 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
201, 19jca 511 . 2 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
21 xpss 5701 . . . . . . . 8 (𝐴 × 𝐵) ⊆ (V × V)
22 sstr 3992 . . . . . . . 8 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (V × V)) → 𝐹 ⊆ (V × V))
2321, 22mpan2 691 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → 𝐹 ⊆ (V × V))
24 df-rel 5692 . . . . . . 7 (Rel 𝐹𝐹 ⊆ (V × V))
2523, 24sylibr 234 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → Rel 𝐹)
2625adantr 480 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Rel 𝐹)
27 df-ral 3062 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦))
28 eumo 2578 . . . . . . . . . . . 12 (∃!𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
2928imim2i 16 . . . . . . . . . . 11 ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
3029adantl 481 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
31 df-br 5144 . . . . . . . . . . . . . . . 16 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
32 ssel 3977 . . . . . . . . . . . . . . . 16 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
3331, 32biimtrid 242 . . . . . . . . . . . . . . 15 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
34 opelxp1 5727 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
3533, 34syl6 35 . . . . . . . . . . . . . 14 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦𝑥𝐴))
3635exlimdv 1933 . . . . . . . . . . . . 13 (𝐹 ⊆ (𝐴 × 𝐵) → (∃𝑦 𝑥𝐹𝑦𝑥𝐴))
3736con3d 152 . . . . . . . . . . . 12 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ¬ ∃𝑦 𝑥𝐹𝑦))
38 nexmo 2541 . . . . . . . . . . . 12 (¬ ∃𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
3937, 38syl6 35 . . . . . . . . . . 11 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4039adantr 480 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4130, 40pm2.61d 179 . . . . . . . . 9 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → ∃*𝑦 𝑥𝐹𝑦)
4241ex 412 . . . . . . . 8 (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∃*𝑦 𝑥𝐹𝑦))
4342alimdv 1916 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4427, 43biimtrid 242 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4544imp 406 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
46 dffun6 6574 . . . . 5 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4726, 45, 46sylanbrc 583 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Fun 𝐹)
48 dmss 5913 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵))
49 dmxpss 6191 . . . . . . 7 dom (𝐴 × 𝐵) ⊆ 𝐴
5048, 49sstrdi 3996 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹𝐴)
51 breq1 5146 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐹𝑦𝑧𝐹𝑦))
5251eubidv 2586 . . . . . . . . 9 (𝑥 = 𝑧 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑧𝐹𝑦))
5352rspccv 3619 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴 → ∃!𝑦 𝑧𝐹𝑦))
54 euex 2577 . . . . . . . . 9 (∃!𝑦 𝑧𝐹𝑦 → ∃𝑦 𝑧𝐹𝑦)
55 vex 3484 . . . . . . . . . 10 𝑧 ∈ V
5655eldm 5911 . . . . . . . . 9 (𝑧 ∈ dom 𝐹 ↔ ∃𝑦 𝑧𝐹𝑦)
5754, 56sylibr 234 . . . . . . . 8 (∃!𝑦 𝑧𝐹𝑦𝑧 ∈ dom 𝐹)
5853, 57syl6 35 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴𝑧 ∈ dom 𝐹))
5958ssrdv 3989 . . . . . 6 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦𝐴 ⊆ dom 𝐹)
6050, 59anim12i 613 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
61 eqss 3999 . . . . 5 (dom 𝐹 = 𝐴 ↔ (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
6260, 61sylibr 234 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → dom 𝐹 = 𝐴)
63 df-fn 6564 . . . 4 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
6447, 62, 63sylanbrc 583 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹 Fn 𝐴)
65 rnss 5950 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
66 rnxpss 6192 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
6765, 66sstrdi 3996 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
6867adantr 480 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ran 𝐹𝐵)
69 df-f 6565 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
7064, 68, 69sylanbrc 583 . 2 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹:𝐴𝐵)
7120, 70impbii 209 1 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃*wmo 2538  ∃!weu 2568  wral 3061  Vcvv 3480  wss 3951  cop 4632   class class class wbr 5143   × cxp 5683  dom cdm 5685  ran crn 5686  Rel wrel 5690  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569
This theorem is referenced by:  dff4  7121  seqomlem2  8491
  Copyright terms: Public domain W3C validator