Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTV0 | Structured version Visualization version GIF version |
Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTV0 | ⊢ Disj ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5123 | . . . . 5 ⊢ ¬ 𝑢∅𝑥 | |
2 | 1 | nex 1803 | . . . 4 ⊢ ¬ ∃𝑢 𝑢∅𝑥 |
3 | nexmo 2541 | . . . 4 ⊢ (¬ ∃𝑢 𝑢∅𝑥 → ∃*𝑢 𝑢∅𝑥) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑢 𝑢∅𝑥 |
5 | 4 | ax-gen 1798 | . 2 ⊢ ∀𝑥∃*𝑢 𝑢∅𝑥 |
6 | rel0 5709 | . 2 ⊢ Rel ∅ | |
7 | dfdisjALTV4 36827 | . 2 ⊢ ( Disj ∅ ↔ (∀𝑥∃*𝑢 𝑢∅𝑥 ∧ Rel ∅)) | |
8 | 5, 6, 7 | mpbir2an 708 | 1 ⊢ Disj ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 ∅c0 4256 class class class wbr 5074 Rel wrel 5594 Disj wdisjALTV 36367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-coss 36537 df-cnvrefrel 36643 df-disjALTV 36816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |