Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjALTV0 Structured version   Visualization version   GIF version

Theorem disjALTV0 38753
Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.)
Assertion
Ref Expression
disjALTV0 Disj ∅

Proof of Theorem disjALTV0
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br0 5159 . . . . 5 ¬ 𝑢𝑥
21nex 1800 . . . 4 ¬ ∃𝑢 𝑢𝑥
3 nexmo 2535 . . . 4 (¬ ∃𝑢 𝑢𝑥 → ∃*𝑢 𝑢𝑥)
42, 3ax-mp 5 . . 3 ∃*𝑢 𝑢𝑥
54ax-gen 1795 . 2 𝑥∃*𝑢 𝑢𝑥
6 rel0 5765 . 2 Rel ∅
7 dfdisjALTV4 38715 . 2 ( Disj ∅ ↔ (∀𝑥∃*𝑢 𝑢𝑥 ∧ Rel ∅))
85, 6, 7mpbir2an 711 1 Disj ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538  wex 1779  ∃*wmo 2532  c0 4299   class class class wbr 5110  Rel wrel 5646   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-coss 38409  df-cnvrefrel 38525  df-disjALTV 38704
This theorem is referenced by:  eqvrel0  38785  det0  38786  eqvrelcoss0  38787  pet02  38813
  Copyright terms: Public domain W3C validator