![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTV0 | Structured version Visualization version GIF version |
Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTV0 | ⊢ Disj ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5197 | . . . . 5 ⊢ ¬ 𝑢∅𝑥 | |
2 | 1 | nex 1797 | . . . 4 ⊢ ¬ ∃𝑢 𝑢∅𝑥 |
3 | nexmo 2539 | . . . 4 ⊢ (¬ ∃𝑢 𝑢∅𝑥 → ∃*𝑢 𝑢∅𝑥) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑢 𝑢∅𝑥 |
5 | 4 | ax-gen 1792 | . 2 ⊢ ∀𝑥∃*𝑢 𝑢∅𝑥 |
6 | rel0 5812 | . 2 ⊢ Rel ∅ | |
7 | dfdisjALTV4 38698 | . 2 ⊢ ( Disj ∅ ↔ (∀𝑥∃*𝑢 𝑢∅𝑥 ∧ Rel ∅)) | |
8 | 5, 6, 7 | mpbir2an 711 | 1 ⊢ Disj ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 ∃wex 1776 ∃*wmo 2536 ∅c0 4339 class class class wbr 5148 Rel wrel 5694 Disj wdisjALTV 38196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-coss 38393 df-cnvrefrel 38509 df-disjALTV 38687 |
This theorem is referenced by: eqvrel0 38768 det0 38769 eqvrelcoss0 38770 pet02 38796 |
Copyright terms: Public domain | W3C validator |