Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjALTV0 Structured version   Visualization version   GIF version

Theorem disjALTV0 38800
Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.)
Assertion
Ref Expression
disjALTV0 Disj ∅

Proof of Theorem disjALTV0
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br0 5138 . . . . 5 ¬ 𝑢𝑥
21nex 1801 . . . 4 ¬ ∃𝑢 𝑢𝑥
3 nexmo 2536 . . . 4 (¬ ∃𝑢 𝑢𝑥 → ∃*𝑢 𝑢𝑥)
42, 3ax-mp 5 . . 3 ∃*𝑢 𝑢𝑥
54ax-gen 1796 . 2 𝑥∃*𝑢 𝑢𝑥
6 rel0 5738 . 2 Rel ∅
7 dfdisjALTV4 38762 . 2 ( Disj ∅ ↔ (∀𝑥∃*𝑢 𝑢𝑥 ∧ Rel ∅))
85, 6, 7mpbir2an 711 1 Disj ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539  wex 1780  ∃*wmo 2533  c0 4280   class class class wbr 5089  Rel wrel 5619   Disj wdisjALTV 38257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-coss 38456  df-cnvrefrel 38572  df-disjALTV 38751
This theorem is referenced by:  eqvrel0  38832  det0  38833  eqvrelcoss0  38834  pet02  38860
  Copyright terms: Public domain W3C validator