Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjALTV0 Structured version   Visualization version   GIF version

Theorem disjALTV0 38719
Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.)
Assertion
Ref Expression
disjALTV0 Disj ∅

Proof of Theorem disjALTV0
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br0 5151 . . . . 5 ¬ 𝑢𝑥
21nex 1800 . . . 4 ¬ ∃𝑢 𝑢𝑥
3 nexmo 2534 . . . 4 (¬ ∃𝑢 𝑢𝑥 → ∃*𝑢 𝑢𝑥)
42, 3ax-mp 5 . . 3 ∃*𝑢 𝑢𝑥
54ax-gen 1795 . 2 𝑥∃*𝑢 𝑢𝑥
6 rel0 5753 . 2 Rel ∅
7 dfdisjALTV4 38681 . 2 ( Disj ∅ ↔ (∀𝑥∃*𝑢 𝑢𝑥 ∧ Rel ∅))
85, 6, 7mpbir2an 711 1 Disj ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538  wex 1779  ∃*wmo 2531  c0 4292   class class class wbr 5102  Rel wrel 5636   Disj wdisjALTV 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-coss 38375  df-cnvrefrel 38491  df-disjALTV 38670
This theorem is referenced by:  eqvrel0  38751  det0  38752  eqvrelcoss0  38753  pet02  38779
  Copyright terms: Public domain W3C validator