Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTV0 | Structured version Visualization version GIF version |
Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTV0 | ⊢ Disj ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5119 | . . . . 5 ⊢ ¬ 𝑢∅𝑥 | |
2 | 1 | nex 1804 | . . . 4 ⊢ ¬ ∃𝑢 𝑢∅𝑥 |
3 | nexmo 2541 | . . . 4 ⊢ (¬ ∃𝑢 𝑢∅𝑥 → ∃*𝑢 𝑢∅𝑥) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑢 𝑢∅𝑥 |
5 | 4 | ax-gen 1799 | . 2 ⊢ ∀𝑥∃*𝑢 𝑢∅𝑥 |
6 | rel0 5698 | . 2 ⊢ Rel ∅ | |
7 | dfdisjALTV4 36754 | . 2 ⊢ ( Disj ∅ ↔ (∀𝑥∃*𝑢 𝑢∅𝑥 ∧ Rel ∅)) | |
8 | 5, 6, 7 | mpbir2an 707 | 1 ⊢ Disj ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1783 ∃*wmo 2538 ∅c0 4253 class class class wbr 5070 Rel wrel 5585 Disj wdisjALTV 36294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-coss 36464 df-cnvrefrel 36570 df-disjALTV 36743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |