Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTV0 | Structured version Visualization version GIF version |
Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTV0 | ⊢ Disj ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5082 | . . . . 5 ⊢ ¬ 𝑢∅𝑥 | |
2 | 1 | nex 1803 | . . . 4 ⊢ ¬ ∃𝑢 𝑢∅𝑥 |
3 | nexmo 2559 | . . . 4 ⊢ (¬ ∃𝑢 𝑢∅𝑥 → ∃*𝑢 𝑢∅𝑥) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑢 𝑢∅𝑥 |
5 | 4 | ax-gen 1798 | . 2 ⊢ ∀𝑥∃*𝑢 𝑢∅𝑥 |
6 | rel0 5642 | . 2 ⊢ Rel ∅ | |
7 | dfdisjALTV4 36382 | . 2 ⊢ ( Disj ∅ ↔ (∀𝑥∃*𝑢 𝑢∅𝑥 ∧ Rel ∅)) | |
8 | 5, 6, 7 | mpbir2an 711 | 1 ⊢ Disj ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1782 ∃*wmo 2556 ∅c0 4226 class class class wbr 5033 Rel wrel 5530 Disj wdisjALTV 35920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-coss 36092 df-cnvrefrel 36198 df-disjALTV 36371 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |