![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnfc2 | Structured version Visualization version GIF version |
Description: An alternative statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
dfnfc2 | ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2909 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
2 | id 22 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
3 | 1, 2 | nfeqd 2919 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
4 | 3 | alrimiv 1926 | . 2 ⊢ (Ⅎ𝑥𝐴 → ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
5 | df-nfc 2895 | . . . . 5 ⊢ (Ⅎ𝑥{𝐴} ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ {𝐴}) | |
6 | velsn 4664 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
7 | 6 | nfbii 1850 | . . . . . 6 ⊢ (Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ Ⅎ𝑥 𝑦 = 𝐴) |
8 | 7 | albii 1817 | . . . . 5 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
9 | 5, 8 | sylbbr 236 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥 𝑦 = 𝐴 → Ⅎ𝑥{𝐴}) |
10 | 9 | nfunid 4937 | . . 3 ⊢ (∀𝑦Ⅎ𝑥 𝑦 = 𝐴 → Ⅎ𝑥∪ {𝐴}) |
11 | nfa1 2152 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 𝐴 ∈ 𝑉 | |
12 | unisng 4949 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
13 | 12 | sps 2186 | . . . 4 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
14 | 11, 13 | nfceqdf 2904 | . . 3 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥∪ {𝐴} ↔ Ⅎ𝑥𝐴)) |
15 | 10, 14 | imbitrid 244 | . 2 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (∀𝑦Ⅎ𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴)) |
16 | 4, 15 | impbid2 226 | 1 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: eusv2nf 5413 |
Copyright terms: Public domain | W3C validator |