| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnfc2 | Structured version Visualization version GIF version | ||
| Description: An alternative statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfnfc2 | ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2895 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
| 2 | id 22 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 1, 2 | nfeqd 2905 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
| 4 | 3 | alrimiv 1928 | . 2 ⊢ (Ⅎ𝑥𝐴 → ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 5 | df-nfc 2881 | . . . . 5 ⊢ (Ⅎ𝑥{𝐴} ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ {𝐴}) | |
| 6 | velsn 4589 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 7 | 6 | nfbii 1853 | . . . . . 6 ⊢ (Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ Ⅎ𝑥 𝑦 = 𝐴) |
| 8 | 7 | albii 1820 | . . . . 5 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 9 | 5, 8 | sylbbr 236 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥 𝑦 = 𝐴 → Ⅎ𝑥{𝐴}) |
| 10 | 9 | nfunid 4862 | . . 3 ⊢ (∀𝑦Ⅎ𝑥 𝑦 = 𝐴 → Ⅎ𝑥∪ {𝐴}) |
| 11 | nfa1 2154 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 𝐴 ∈ 𝑉 | |
| 12 | unisng 4874 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
| 13 | 12 | sps 2188 | . . . 4 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| 14 | 11, 13 | nfceqdf 2890 | . . 3 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥∪ {𝐴} ↔ Ⅎ𝑥𝐴)) |
| 15 | 10, 14 | imbitrid 244 | . 2 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (∀𝑦Ⅎ𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴)) |
| 16 | 4, 15 | impbid2 226 | 1 ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 {csn 4573 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 |
| This theorem is referenced by: eusv2nf 5331 |
| Copyright terms: Public domain | W3C validator |