MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnfc2 Structured version   Visualization version   GIF version

Theorem dfnfc2 4820
Description: An alternative statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
dfnfc2 (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem dfnfc2
StepHypRef Expression
1 nfcvd 2900 . . . 4 (𝑥𝐴𝑥𝑦)
2 id 22 . . . 4 (𝑥𝐴𝑥𝐴)
31, 2nfeqd 2909 . . 3 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
43alrimiv 1934 . 2 (𝑥𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
5 df-nfc 2881 . . . . 5 (𝑥{𝐴} ↔ ∀𝑦𝑥 𝑦 ∈ {𝐴})
6 velsn 4532 . . . . . . 7 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
76nfbii 1858 . . . . . 6 (Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ Ⅎ𝑥 𝑦 = 𝐴)
87albii 1826 . . . . 5 (∀𝑦𝑥 𝑦 ∈ {𝐴} ↔ ∀𝑦𝑥 𝑦 = 𝐴)
95, 8sylbbr 239 . . . 4 (∀𝑦𝑥 𝑦 = 𝐴𝑥{𝐴})
109nfunid 4802 . . 3 (∀𝑦𝑥 𝑦 = 𝐴𝑥 {𝐴})
11 nfa1 2156 . . . 4 𝑥𝑥 𝐴𝑉
12 unisng 4817 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
1312sps 2186 . . . 4 (∀𝑥 𝐴𝑉 {𝐴} = 𝐴)
1411, 13nfceqdf 2894 . . 3 (∀𝑥 𝐴𝑉 → (𝑥 {𝐴} ↔ 𝑥𝐴))
1510, 14syl5ib 247 . 2 (∀𝑥 𝐴𝑉 → (∀𝑦𝑥 𝑦 = 𝐴𝑥𝐴))
164, 15impbid2 229 1 (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540   = wceq 1542  wnf 1790  wcel 2114  wnfc 2879  {csn 4516   cuni 4796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-sn 4517  df-pr 4519  df-uni 4797
This theorem is referenced by:  eusv2nf  5262
  Copyright terms: Public domain W3C validator