MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnfc2 Structured version   Visualization version   GIF version

Theorem dfnfc2 4822
Description: An alternative statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
dfnfc2 (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem dfnfc2
StepHypRef Expression
1 nfcvd 2956 . . . 4 (𝑥𝐴𝑥𝑦)
2 id 22 . . . 4 (𝑥𝐴𝑥𝐴)
31, 2nfeqd 2965 . . 3 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
43alrimiv 1928 . 2 (𝑥𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
5 df-nfc 2938 . . . . 5 (𝑥{𝐴} ↔ ∀𝑦𝑥 𝑦 ∈ {𝐴})
6 velsn 4541 . . . . . . 7 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
76nfbii 1853 . . . . . 6 (Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ Ⅎ𝑥 𝑦 = 𝐴)
87albii 1821 . . . . 5 (∀𝑦𝑥 𝑦 ∈ {𝐴} ↔ ∀𝑦𝑥 𝑦 = 𝐴)
95, 8sylbbr 239 . . . 4 (∀𝑦𝑥 𝑦 = 𝐴𝑥{𝐴})
109nfunid 4806 . . 3 (∀𝑦𝑥 𝑦 = 𝐴𝑥 {𝐴})
11 nfa1 2152 . . . 4 𝑥𝑥 𝐴𝑉
12 unisng 4819 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
1312sps 2182 . . . 4 (∀𝑥 𝐴𝑉 {𝐴} = 𝐴)
1411, 13nfceqdf 2951 . . 3 (∀𝑥 𝐴𝑉 → (𝑥 {𝐴} ↔ 𝑥𝐴))
1510, 14syl5ib 247 . 2 (∀𝑥 𝐴𝑉 → (∀𝑦𝑥 𝑦 = 𝐴𝑥𝐴))
164, 15impbid2 229 1 (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  {csn 4525   cuni 4800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-uni 4801
This theorem is referenced by:  eusv2nf  5261
  Copyright terms: Public domain W3C validator