MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnfc2 Structured version   Visualization version   GIF version

Theorem dfnfc2 4934
Description: An alternative statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
dfnfc2 (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem dfnfc2
StepHypRef Expression
1 nfcvd 2904 . . . 4 (𝑥𝐴𝑥𝑦)
2 id 22 . . . 4 (𝑥𝐴𝑥𝐴)
31, 2nfeqd 2914 . . 3 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
43alrimiv 1925 . 2 (𝑥𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
5 df-nfc 2890 . . . . 5 (𝑥{𝐴} ↔ ∀𝑦𝑥 𝑦 ∈ {𝐴})
6 velsn 4647 . . . . . . 7 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
76nfbii 1849 . . . . . 6 (Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ Ⅎ𝑥 𝑦 = 𝐴)
87albii 1816 . . . . 5 (∀𝑦𝑥 𝑦 ∈ {𝐴} ↔ ∀𝑦𝑥 𝑦 = 𝐴)
95, 8sylbbr 236 . . . 4 (∀𝑦𝑥 𝑦 = 𝐴𝑥{𝐴})
109nfunid 4918 . . 3 (∀𝑦𝑥 𝑦 = 𝐴𝑥 {𝐴})
11 nfa1 2149 . . . 4 𝑥𝑥 𝐴𝑉
12 unisng 4930 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
1312sps 2183 . . . 4 (∀𝑥 𝐴𝑉 {𝐴} = 𝐴)
1411, 13nfceqdf 2899 . . 3 (∀𝑥 𝐴𝑉 → (𝑥 {𝐴} ↔ 𝑥𝐴))
1510, 14imbitrid 244 . 2 (∀𝑥 𝐴𝑉 → (∀𝑦𝑥 𝑦 = 𝐴𝑥𝐴))
164, 15impbid2 226 1 (∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  {csn 4631   cuni 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-un 3968  df-ss 3980  df-sn 4632  df-pr 4634  df-uni 4913
This theorem is referenced by:  eusv2nf  5401
  Copyright terms: Public domain W3C validator