Proof of Theorem sbal2
Step | Hyp | Ref
| Expression |
1 | | sbequ12 2244 |
. . . . 5
⊢ (𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑)) |
2 | 1 | sps 2178 |
. . . 4
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑)) |
3 | | sbequ12 2244 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
4 | 3 | sps 2178 |
. . . . 5
⊢
(∀𝑦 𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
5 | 4 | dral2 2438 |
. . . 4
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
6 | 2, 5 | bitr3d 280 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
7 | 6 | adantl 482 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
8 | | sb4b 2475 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) |
9 | 8 | adantl 482 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) |
10 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 |
11 | | sb4b 2475 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑))) |
12 | 10, 11 | albid 2215 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑))) |
13 | | alcom 2156 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) |
14 | 12, 13 | bitrdi 287 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑))) |
15 | | nfnae 2434 |
. . . . 5
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
16 | | nfeqf1 2379 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) |
17 | | 19.21t 2199 |
. . . . . 6
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) |
19 | 15, 18 | albid 2215 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) |
20 | 14, 19 | sylan9bbr 511 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) |
21 | 9, 20 | bitr4d 281 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
22 | 7, 21 | pm2.61dan 810 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |