MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotad Structured version   Visualization version   GIF version

Theorem nfiotad 6530
Description: Deduction version of nfiota 6531. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfiotadw 6528 when possible. (Contributed by NM, 18-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiotad.1 𝑦𝜑
nfiotad.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfiotad (𝜑𝑥(℩𝑦𝜓))

Proof of Theorem nfiotad
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6526 . 2 (℩𝑦𝜓) = {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)}
2 nfv 1913 . . . 4 𝑧𝜑
3 nfiotad.1 . . . . 5 𝑦𝜑
4 nfiotad.2 . . . . . . 7 (𝜑 → Ⅎ𝑥𝜓)
54adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
6 nfeqf1 2387 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
76adantl 481 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧)
85, 7nfbid 1901 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓𝑦 = 𝑧))
93, 8nfald2 2453 . . . 4 (𝜑 → Ⅎ𝑥𝑦(𝜓𝑦 = 𝑧))
102, 9nfabd 2934 . . 3 (𝜑𝑥{𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
1110nfunid 4937 . 2 (𝜑𝑥 {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
121, 11nfcxfrd 2907 1 (𝜑𝑥(℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wnf 1781  {cab 2717  wnfc 2893   cuni 4931  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-sn 4649  df-uni 4932  df-iota 6525
This theorem is referenced by:  nfiota  6531  nfriotad  7416
  Copyright terms: Public domain W3C validator