| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiotad | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfiota 6443. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfiotadw 6440 when possible. (Contributed by NM, 18-Feb-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfiotad.1 | ⊢ Ⅎ𝑦𝜑 |
| nfiotad.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfiotad | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 6438 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfiotad.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfiotad.2 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| 6 | nfeqf1 2379 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧) |
| 8 | 5, 7 | nfbid 1903 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
| 9 | 3, 8 | nfald2 2445 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
| 10 | 2, 9 | nfabd 2917 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
| 11 | 10 | nfunid 4865 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
| 12 | 1, 11 | nfcxfrd 2893 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 Ⅎwnf 1784 {cab 2709 Ⅎwnfc 2879 ∪ cuni 4859 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3919 df-sn 4577 df-uni 4860 df-iota 6437 |
| This theorem is referenced by: nfiota 6443 nfriotad 7314 |
| Copyright terms: Public domain | W3C validator |