Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiotad | Structured version Visualization version GIF version |
Description: Deduction version of nfiota 6382. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfiotadw 6379 when possible. (Contributed by NM, 18-Feb-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfiotad.1 | ⊢ Ⅎ𝑦𝜑 |
nfiotad.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfiotad | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6377 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
2 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiotad.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | nfiotad.2 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
6 | nfeqf1 2379 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧) |
8 | 5, 7 | nfbid 1906 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
9 | 3, 8 | nfald2 2445 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
10 | 2, 9 | nfabd 2931 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
11 | 10 | nfunid 4842 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
12 | 1, 11 | nfcxfrd 2905 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 Ⅎwnf 1787 {cab 2715 Ⅎwnfc 2886 ∪ cuni 4836 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 df-uni 4837 df-iota 6376 |
This theorem is referenced by: nfiota 6382 nfriotad 7224 |
Copyright terms: Public domain | W3C validator |