| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiotad | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfiota 6473. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfiotadw 6470 when possible. (Contributed by NM, 18-Feb-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfiotad.1 | ⊢ Ⅎ𝑦𝜑 |
| nfiotad.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfiotad | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 6468 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfiotad.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfiotad.2 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| 6 | nfeqf1 2378 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧) |
| 8 | 5, 7 | nfbid 1902 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
| 9 | 3, 8 | nfald2 2444 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
| 10 | 2, 9 | nfabd 2915 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
| 11 | 10 | nfunid 4880 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
| 12 | 1, 11 | nfcxfrd 2891 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 Ⅎwnf 1783 {cab 2708 Ⅎwnfc 2877 ∪ cuni 4874 ℩cio 6465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-sn 4593 df-uni 4875 df-iota 6467 |
| This theorem is referenced by: nfiota 6473 nfriotad 7358 |
| Copyright terms: Public domain | W3C validator |