MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc Structured version   Visualization version   GIF version

Theorem nfnfc 2936
Description: Hypothesis builder for 𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 2301. (Revised by Wolf Lammen, 10-Dec-2019.)
Hypothesis
Ref Expression
nfnfc.1 𝑥𝐴
Assertion
Ref Expression
nfnfc 𝑥𝑦𝐴

Proof of Theorem nfnfc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2912 . 2 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcriv 2916 . . . 4 𝑥 𝑧𝐴
43nfnf 2266 . . 3 𝑥𝑦 𝑧𝐴
54nfal 2263 . 2 𝑥𝑧𝑦 𝑧𝐴
61, 5nfxfr 1815 1 𝑥𝑦𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1505  wnf 1746  wcel 2050  wnfc 2910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-10 2079  ax-11 2093  ax-12 2106
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747  df-nfc 2912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator