| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnfc | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for Ⅎ𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 2375. (Revised by Wolf Lammen, 10-Dec-2019.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfnfc | ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2884 | . 2 ⊢ (Ⅎ𝑦𝐴 ↔ ∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴) | |
| 2 | nfnfc.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 3 | df-nfc 2884 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
| 4 | 2, 3 | mpbi 230 | . . . . 5 ⊢ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 5 | 4 | spi 2183 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 6 | 5 | nfnf 2325 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑦 𝑧 ∈ 𝐴 |
| 7 | 6 | nfal 2322 | . 2 ⊢ Ⅎ𝑥∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴 |
| 8 | 1, 7 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1537 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-nfc 2884 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |