MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc Structured version   Visualization version   GIF version

Theorem nfnfc 2916
Description: Hypothesis builder for 𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 2371. (Revised by Wolf Lammen, 10-Dec-2019.)
Hypothesis
Ref Expression
nfnfc.1 𝑥𝐴
Assertion
Ref Expression
nfnfc 𝑥𝑦𝐴

Proof of Theorem nfnfc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2886 . 2 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2 nfnfc.1 . . . . . 6 𝑥𝐴
3 df-nfc 2886 . . . . . 6 (𝑥𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
42, 3mpbi 233 . . . . 5 𝑧𝑥 𝑧𝐴
54spi 2181 . . . 4 𝑥 𝑧𝐴
65nfnf 2325 . . 3 𝑥𝑦 𝑧𝐴
76nfal 2322 . 2 𝑥𝑧𝑦 𝑧𝐴
81, 7nfxfr 1860 1 𝑥𝑦𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1541  wnf 1791  wcel 2110  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-11 2158  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-nfc 2886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator