Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnfc | Structured version Visualization version GIF version |
Description: Hypothesis builder for Ⅎ𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 2372. (Revised by Wolf Lammen, 10-Dec-2019.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfnfc | ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2888 | . 2 ⊢ (Ⅎ𝑦𝐴 ↔ ∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴) | |
2 | nfnfc.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | df-nfc 2888 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
4 | 2, 3 | mpbi 229 | . . . . 5 ⊢ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 |
5 | 4 | spi 2179 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
6 | 5 | nfnf 2324 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑦 𝑧 ∈ 𝐴 |
7 | 6 | nfal 2321 | . 2 ⊢ Ⅎ𝑥∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴 |
8 | 1, 7 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-nfc 2888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |